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AFIT/GCE/ENG/OOM-02 

Abstract 

Information superiority is identified as an Air Force core competency and is rec- 

ognized as a key enabler for the success of future missions. Information protection and 

information assurance are vital components required for achieving superiority in the In- 

fosphere, but these goals are threatened by the exponential birth rate of new computer 

viruses. The increased global interConnectivity that is empowering advanced information 

systems is also increasing the spread of malicious code and current anti-virus solutions are 

quickly becoming overwhelmed by the burden of capturing and classifying new viral stains. 

To overcome this problem, a distributed computer virus immune system (CVIS) based on 

biological strategies is developed. 

The biological immune system (BIS) offers a highly parallel defense-in-depth solution 

for detecting and eliminating foreign invaders. Each component of the BIS can be viewed 

as an autonomous agent. Only through the collective actions of this multi-agent system 

can non-self entities be detected and removed from the body. This research develops a 

model of the BIS and utilizes software agents to implement a CVIS. 

The system design validates that agents are an effective methodology for the construc- 

tion of an artificial immune system largely because the biological basis for the architecture 

can be described as a system of collaborating agents. The distributed agent architecture 

provides support for detection and management capabilities that are unavailable in cur- 

rent anti-virus solutions. However, the slow performance of the Java and the Java Shared 

Data Toolkit implementation indicate the need for a compiled language solution and the 

importance of understanding the performance issues in agent system design. 

The detector agents are able to distinguish self from non-self within a probabilistic 

error rate that is tunable through the proper selection of system parameters. This research 

also shows that by fighting viruses using an immune system model, that known, and 

previously unknown, malicious code can be detected and removed from the system. 

Xlll 
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A Distributed Agent Architecture 

for a Computer Virus Immune System 

I.   Introduction 

The use of information systems has become vital to the mission of the Air Force, so much 

so that information superiority is identified as one of the Air Force core competencies. The 

Air Force is also quickly moving towards distributed Command, Control, Communications, 

Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) applications because 

information superiority is seen as the key factor to success in the 21st century. But, if the 

war-fighters are going to rely on information systems, then these systems must be robust, 

reliable, and secure. 

While information dependence is increasing, the threat from malicious code, such as 

computer viruses, is also on the rise. The number of computer viruses has been increasing 

exponentially (Figure 1) from their first appearance in 1986 to over 45,000 different strains 

identified today (SymOO). Viruses were once spread by sharing disks. Now, with the rise 

of the Internet and global connectivity, malicious code is able to spread farther and faster 

than ever before. 

Current anti-virus (AV) solutions are "reactive." They rely upon collecting and ana- 

lyzing specimens of new viruses in order to update AV programs with the means of detec- 

tion. This approach results in a slow reaction time to new threats and is quickly becoming 

too much of a burden to update with the increasing number of new viruses discovered each 

day. In the past, scan string updates were provided every two to three months; currently, 

vendors provide updates every few hours (LeoOO). To overcome this problem, a self- 

adaptive computer virus immune system (CVIS) based on biological strategies 

is developed. 
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Figure 1.     Exponential growth in virus numbers (Net98). 

1.1    Artificial Immune Systems 

There are several computational techniques based on biological models including neu- 

ral networks, evolutionary algorithms, and artificial immune systems (AISs) or immunolog- 

ical computation (Das99). The human immune system has been the target of considerable 

research interest in the medical community from which several theories of system behavior 

have been developed. The use of these immune system models to solve the computer virus 

problem has been suggested by (KA94, Das99, KSSW97, FHS97, LMV99). Immunologi- 

cal computation has also been applied to other problem domains, not all of which are in 

the computer security field. Some of the more interesting examples include decision sup- 

port systems (Das98), multi-optimization problems (MTF96), anomaly detection in time 

series data (Das99), fault diagnosis (Das99), robust scheduling (HRN98), and loan appli- 

cation fraud detection (Her96). All of these utilize the pattern matching and "learning" 

mechanisms of the immune system model to perform core system features. A lot of theo- 

retical groundwork in immunological computation has been completed, but only a handful 

of artificial immune systems have been built (HC96, HF99, Her96), none of which have 

been applied to the computer virus problem domain due to the inherent complexity of AV 

systems. 
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1.2   Software Agents 

The highly parallel and distributed structure of the biological immune system sug- 

gests that an integrated architecture can be viewed as a multi-agent system (MAS), where 

separate functions are carried out by individual agents (Das98). Furthermore, the general 

immune system features represent a model of adaptive processes at the local level, with 

useful behavior emerging at the global level (Das99). This is similar to the description of 

MAS operations by the artificial intelligence community (DeL99a). 

Despite all the research into software agents, researchers do not seem to agree on 

the exact definition of an agent (FG96). One definition speaks of agents as software 

components that communicate with their peers by exchanging messages (GK95). This 

effort focuses on inter-agent communication. Another paper on mobile agents uses the 

definition of a software agent as a program that can halt execution, ship itself to another 

computer on the network, and resume operation at the new computer (Ven97). It appears 

that the definition of an agent needs to be agreed upon up front in a discussion in order to 

communicate effectively therein. Therefore, the definition of an agent changes from paper 

to paper. The broadest definition includes anything that can be viewed as perceiving its 

environment and acting upon that environment (RN95). 

Most of the current research is related to embodying agents with one or more of the 

qualities of agenthood. But, to solve complex problems, groups of agents must work to- 

gether, often in heterogeneous environments (DeL99a). This creates engineering challenges 

as agents must now communicate, coordinate, and collaborate. 

Along with the theoretical work on agents, several libraries, frameworks, or agent 

development kits (ADKs) have been developed (Ret99). Many of the initial ADKs were 

developed in scripting languages, such as TCL or Telescript, to facilitate operation in 

heterogeneous environments. But, with its network-centricity, sandbox security model, and 

platform independence, Java has become the environment of choice for the development 

of agent-based tools (Som97). The problem with these interpreted languages is speed, and 

very little research has been done on on the effects of this on high-performance computing 
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applications or highly combinatoric problems.  Software agents need to be designed and 

deployed effectively in order to counter the AV combinatorics. 

1.3   Identifying Viruses 

The most common method of identify viruses is signature strings. A 16 byte string 

has become the defacto AV industry standard. Researchers at IBM have shown that 16 

bytes is sufficient enough to identify malicious code with a 0.5% false positive rate (KA94). 

The largest problem with creating a new CVIS is the generation of these signature strings, 

or antibodies in an immune system. The problem is that only some of the 25616 = 3.4 x 1038 

combinations identify one or more valid viruses. Furthermore, if a valid string could be gen- 

erated each microsecond, it would take a serial computer 1.08 x 1025 years to generate them 

all. This methodology uses simple exhaustive search, but even the generation of strings 

through machine learning techniques has been shown to be highly combinatoric (C099). 

In general, the generation of strings and then testing their capabilities as virus identifiers 

is similar to the Boolean satisfiability NP Complete problem (NPc99). In this problem, 

a Boolean function is known (for example a function that describes one or more viruses) 

and the goal is to find the instantiation of function variables that returns a true value from 

the function. There may be one, many, or even no valid variable assignments that return 

true. The problem then degenerates into enumerating all possibilities, which leads to its 

classification as NP. This indicates that a polynomial-time algorithm does not exist for 

generating antibodies and so an approximation algorithm is the only choice. 

Another issue with generating all possible scan strings is retaining them in memory 

or offline storage. Again, if 16 byte strings are used, storing all of the signatures would 

take 25616xi6ob|/toxiM6yte = 5 4 x itfa Mbytes. Even with the removal of known invalid 

combinations, this is far too large for current storage methods. 

A parallel implementation of an antibody generation program is needed to reduce the 

high combinatoric burden and make the system practical. The large storage requirements 

can be reduced through creative methods, such as compression, but the sizes required also 

indicate the need for a distributed system. Finally, the increased connectivity of networked 

systems, which has aided virus spread in the past, can be used as a defensive weapon with a 
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distributed CVTS. This not only provides a parallel framework for the antibody generators 

and a distributed file system for their storage, but also provides the capabilities to eliminate 

intruders as they enter the system. A collective anti-viral self defense organization is 

created by delivering improved inoculations across the entire system. 

1.4    Problem Statement 

Current anti-virus methods are reactive. They rely on captured viral fragments in 

order to find future infections. This requires manpower intensive activities to capture, 

dissect, and produce signatures from the exponentially increasing numbers of new viruses. 

The inoculation of local systems with new signature updates, which are vital to the con- 

tinued effectiveness of AV suites, often must be completed manually by the end user. The 

further use of the scanner also relies on the regular diligence of a system user. All of these 

factors result in AV solutions that cannot react to a rapidly increasing number of known 

viruses even if the product is installed and employed correctly. An AV methodology based 

on the biological immune system model is developed in order to create an autonomous and 

self-adaptive computer virus immune system. 

An artificial immune system requires a diverse set of antibodies in order to detect 

harmful intrusions. Early work in this field has shown that the creation of viable anti- 

body scan strings can be exponentially combinatoric. This research proposes efficiently 

decomposing the workload across a distributed set of nodes by utilizing parallel software 

engineering principles. This decomposition is done through the use of software agents. 

The human immune system can be viewed as a multi-agent architecture whose entities 

each have their own limited capabilities. Total system functionality is the result of all these 

components working together to eliminate foreign invaders. In the information system 

domain, software agents are proposed as a viable methodology for artificial immune system 

construction. A fully effective agent-based CVTS will result from the collaboration between 

multiple software agents. Note that no such system has been completely designed or built. 
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1.5   Research Approach and Objectives 

The goal of this research is to develop a agent-based CVIS. The approach to this prob- 

lem is the integration of multi-agent systems, human immunology, computer immunology, 

parallel & distributed computation, and computer virus detection into an effective, effi- 

cient, and scaleable CVIS (Figure 21). This approach is captured in the following research 

objectives: 

Figure 2.     Research integration domains. 

Objective - Model Development Understand the capabilities and limitations of the 

immune system model as applied to the computer virus problem. 

Objective - Matching Function The biological immune system utilizes imperfect match- 

ing for the recognition of foreign threats. A similar pattern matching function for the 

CVIS is desired that provides a relative similarity as opposed to a Boolean match/no- 

match condition. This objective is the investigation of pattern matching approaches 

to artificial immune systems. 

Objective - Construct a Computer Virus Immune System Design, implement, and 

test a functioning CVIS based on distributed software agents. The agents will utilize 

parallel and distributed computing methodologies to reduce the combinatoric burden 

of the core CVIS processes. 

1The "Boris" virus character is a trademark of Dr. Solomon's Software Limited. 
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Objective - Efficiency, Effectiveness, and Scaleability The system must be able to 

effectively detect, identify, and eliminate malicious code. These operations should be 

performed efficiently so that they may run unobtrusively in the background. Addi- 

tionally, the distributed system should be expandable in order to increase its coverage 

and capabilities. 

1.6   Scope 

Viruses can attack files and specific disk sectors. Additionally, invaders can enter the 

system through various means including disk swapping, email, or file transfers (Nat99). 

This research is focusing solely at detecting file infections. A design goal is to modularize 

detector agents so that they could easily be extended in the future for the scanning of 

other input sources. 

The major problem with a CVIS is the generation of antibody pattern matching 

strings. Many methods have been suggested, including the use of random search (HF99), 

genetic algorithms (FSJP93), and machine learning (C099). All of these have been shown 

to be combinatoric and computationally intensive. Without a priori knowledge of the large 

self and non-self space, any methodology of searching for non-self strings and providing a 

diverse coverage is not likely to out perform a random search (WM97). Due to a lack of 

a self or non-self space characterization, this project only uses the random generation of 

strings for antibody creation. 

Much of the current research on software agents targets their specification, construc- 

tion, communication, and attributes (BB98, Bra97, Bre98, Cha97, Ret99, HCK95, GK95, 

FG96). The focus of this project is not on generic agent system development research, but 

on the possible use of agents as an effective means to construct a CVIS application. 

Finally, the purpose of this research is not to create an accurate representation of 

the human immune system, nor to prove the validity of it. The goal is to use a model 

of the functions and features of the biological immune system for an improved anti-virus 

information system. 
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1.7   Thesis Overview 

This document provides a discussion of this research effort, starting with a litera- 

ture review of viruses, virus detection methods, biological immune systems, immunological 

computation, and distributed agents in Chapter Two. Chapter Three and Four provide 

a discussion of the system design methodology. Chapter Five presents the results of sys- 

tem testing. Finally, Chapter Six concludes that distributed computer immunology could 

provide a viable computer virus detection and elimination system. This chapter also dis- 

cusses avenues of future research within the areas of immunological computation, computer 

security, and virus detection. 
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77.   Literature Review 

This chapter presents the background knowledge required to understand the development 

of an agent-based artificial immune system for combating computer viruses. Each section 

gives an overview on one of the aspects of this multidimensional integration problem. Sec- 

tion One covers computer viruses, the many types, and current anti-virus methodologies. 

The next section gives an overview of the human immune system, its functions, and key 

components. This is followed by a discussion of the current research into artificial im- 

mune systems. The final section contains a summary of agents, their design, and their 

applicability to this problem domain. 

2.1    Computer Viruses 

The term computer virus is often attached to unwanted code that does malicious ac- 

tivities on its host computer. Applying the term in this fashion is imprecise and misleading 

as viruses are actually only one form of "rogue code." Malicious code can take the form 

of Trojan horses, worms, or viruses. Additionally each of these may or may not contain a 

payload or "logic bomb." It is the payload routine that actually performs the "damage." 

A Trojan horse is a program the masquerades as one program, while it actually 

performs an entirely different task altogether (Ska96). This variant gets its name from 

the original wooden horse used to conquer the city of Troy (Ska96). A typical Trojan is 

given the same name as another program and waits for an unsuspecting user to execute 

it by mistake. An increasingly common application of Trojans is to use them to bypass 

computer security features on behalf of an intruder in order to gain unauthorized access 

to a computer system. A well known example is the Cult of the Dead Cow's Back Orifice. 

Worms are programs which execute independently and utilize a computer network 

in order to propagate themselves (Coh94, Hof90). They often take advantage of security 

or communications protocol loopholes in order to spread (Ska96). The first worms were 

built at the Zerox PARC research center. They were designed to perform useful work in 

a distributed environment, such as finding idle resources (Hof90). These original worms 

would probably be called mobile agents today. The Melissa virus is more accurately termed 
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a worm as it used the features of Microsoft Exchange e-mail in order to spread itself across 

networks. 

A computer virus is a program that can "infect" other programs by modifying them 

to include a, possibly evolved, version of itself (Coh94). One distinguishing feature of 

viruses is that they are parasitic. They require a host to run them and to spread their 

viral code (Hof90). This is usually another executable program although other hosts, such 

as disk boot sectors, are also targets. 

A sequence of symbols is an element of a "viral set" V if, when a machine interprets 

that sequence of symbols v, it causes some other element of that viral set, v', to appear 

elsewhere in the system at a later point in time. A viral set most commonly makes an exact 

copy of itself on the same machine. However, the formal definition is much broader than 

that because any sequence of symbols that is interpreted on a machine could potentially 

contain a virus (Coh94). Finally, as stated in Cohen's definition, viruses can evolve through 

a countably infinite number of different variations. Therefore, there exists the possibility 

of an infinite number of different viruses. This fact makes the problem of detecting viruses 

intractable (Coh94). 

The problem of creating a Turing Machine program capable of determining, in finite 

time, whether or not a given sequence of symbols is a virus is known as the "decidabil- 

ity" issue (Coh94). Cohen proved in his PhD dissertation that given machine M and a 

nonempty set V, the question as to whether or not the pair (M, V) is a viral set is unde- 

cidable. The proof is a result of the halting problem (Coh94). Due to the intractability 

of detecting viral code, the search space has been reduced by classifying viruses and then 

applying deterministic methods of detection (such as pattern matching) to each class. 

2.1.1 Taxonomy. The features and classifications used to catagorize computer 

viruses are usually discussed in terms related to Microsoft DOS-based computers and their 

variants (Windows 3.1, Windows 95/98). The generic nature of Cohen's definition of a 

virus correctly implies that they can be written for any computer system (Int98). However, 

personal computers running DOS operating systems are the host for the largest number 

of computer viruses. In a collection of 31,774 specimens, 81.43% targeted DOS/Windows 
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Table 1.     Common virus strains and their classification (SymOO). 

Name Type Resident Stealth Encrypting Polymorphic 

Cascade File V V 
Compiler. 1 Companion V 
AntiEXE Boot V V 

SatanBug.Natas Multipartie V V V V 
WM.Concept Macro V 

as the host platform ((Ref99) as of 10 Jan 2000). This is due to the large population of 

such systems and the lack of security inherent in their design. For instance, there are only 

5 viruses that target Linux machines, an operating system that enforces access rights on 

files and system resources (Ref99). 

Computer viruses are usually classified by their method of infection. The common 

subclasses of viruses are file infector, boot sector, and macro viruses. Within each of 

these genera, there also exists subcategories. Additionally, many viruses contain advanced 

features or capabilities which distinguish them from simple varieties (Table 1). 

2.1.1.1 File Infector. The file infector is the type most commonly associated 

with the term computer virus. File infection viruses work by inserting their code into 

executable files, just as the biological virus works by inserting its DNA code into living 

cells (Ska96). The host file then executes the malicious code on behalf of the virus. If the 

virus attaches to a non-executable file, such as a text file, it may corrupt some data, but 

it can not be executed, and so it won't reproduce (Lud96). On a DOS based machine, 

executable files include COM, EXE, and also some more esoteric types such as SYS and 

OVL. Any executable code is a potential target, even shared libraries such as DLLs. Often 

file infectors target a specific file. These viruses make use of a detailed knowledge of the 

files they attack in order to hide within the target file's structure (Lud96). 

The virus code itself can either be appended, inserted, or even interleaved into the 

host file. The crudest method is to simply overwrite the existing file with virus code. This 

results in no change to the original file length, but the original code no longer operates 

correctly, and so the presence of a virus is quickly recognized. The most advanced method 
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is to interleave viral code into unused portions of the original file. This requires advanced 

flow control instructions to ensure that the viral code is executed in the correct order. This 

method also results in no change to the original file length. The most common infection 

places a small virus subroutine at the end of a file and then inserts a call to that routine 

just ahead of the original file's code (Figure 3). Some commonly known examples of file 

infectors include Cascade, Green Caterpillar, and Jerusalem. 

Jump Instruction Host File Code Viral Code 

Figure 3.     File infector virus methodology (Sla96). 

2.1.1.2    Companion. The companion virus is more accurately classified 

as a Trojan horse. It masquerades as a legitimate program and takes advantage of the 

operating system methodology to run the virus instead of the program the user thought 

they were executing. In the MSDOS operating system, directly executable files have only 

three possible extensions, COM, EXE, or BAT. If a user enters a program name at the 

command line without an extension, COM is assumed. If myprog.com is not found, then 

EXE is assumed. If myprog.exe is not found then BAT is assumed. This pattern is 

continued through the current directory and then on each directory specified in the PATH 

environment variable (Ska96). A UNIX file system operates similarly but only searches for 

myprog in the current path. 

The companion Trojan/virus uses this program search feature to its advantage. First, 

it finds an EXE or a BAT file to infect. But, instead of infecting the file itself, it simply 

places a copy of its viral code in a file with the same name as the target, but with a COM 

suffix. A COM file can be "infected" by placing a copy of the virus with the same filename 

as the COM file, but in a directory that appears earlier in the path list. 
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Companion viruses typically do not spread well. They are easily identified due to the 

fact that multiple programs with the same name are appearing all over a user's directories. 

Additionally, it is difficult for them to spread to other computers. This is because getting 

them there would generally require copying the Trojan instead of the actual program to a 

disk (Ska96). Compiler and its variants are examples of this virus type. 

2.1.1.3 Boot. Boot viruses come in two major varieties, boot sector and 

partition sector. Both types attach themselves to specific areas of a disk that are loaded 

and executed on startup. The boot sector virus attacks a specific location on a computer's 

disk, known as the boot sector or the master boot record (MBR), while the partition sector 

virus attaches itself to the partition record (Lud96). 

A physical hard disk can be divided into several logical disks. The table that maps the 

partitions, as well as a small program to complete the translations, is stored in the partition 

record or sector. On boot up, the small program is read from the partition sector, checks 

for a valid partition table, and then proceeds to load the boot sector from the designated 

active logical disk (Ska96). The boot sector contains the first system program a computer 

loads from disk into memory and executes. This is normally reserved for the computer's 

operating system loader. 

A partition sector virus infects a hard disk's partition sector (Ska96). But, this sector 

is usually limited to 512 bytes in size. Additionally, without the partition table and the 

translation program, the disk does not operate properly. So, an effective partition virus 

must copy the correct partition sector information to somewhere else on the disk and then 

pass control to it after it has completed its viral code. A simple overwriting partition 

sector virus would render the hard disk inoperable (Ska96). 

On startup, the boot sector is loaded from disk and executed. By placing its viral 

code into the boot sector of the disk, a virus can gain control of the computer immediately 

upon boot-up (Figure 4). This allows the virus to execute before anything can detect 

its existence (Lud96). If a computer is booted from an infected floppy, the virus can 

immediately spread to the hard disk or any other disk attached to the system. If there 

are no other disks present, then the virus does not have any additional hosts to spread 
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to. Many boot viruses solve this problem by becoming memory resident (Section 2.1.2.1) 

where they wait for new hosts to arrive. Due to the success of this infection method, many 

examples of this type exist. Some of the most prevalent viruses of this type include Form, 

AntiExe, and EmpireMonkey. 

Virus 

Viral Code MBR FAT/Partition Table 

Figure 4.     Boot sector virus methodology. 

2.1.1.4 Macro. The macro virus is the latest type to enter the taxonomy. 

They are unique in that they infect what had previously been impossible, data files. The 

macro virus is a section of code contained within an application document. The most 

common today are MSWord macro viruses, although examples exist that infect the docu- 

ments created by any of the MSOffice applications as well as others, such as WordPerfect 

documents. In Microsoft's desire to make the MSOffice family of products more powerful, 

by adding Visual Basic for Applications (VBA), they have opened the door for executable 

code to be contained within data files. The intent of this capability was to add automa- 

tion capabilities to otherwise static documents. As a further boon to virus writers, macro 

viruses are much easier to write than before because macros use high level languages and 

do not require specific operating system knowledge. 

The idea of the macro virus was first proposed in 1989 (For97). The first macro virus 

to appear in the wild, Concept, was discovered in 1995 and since then, this type has risen 

to be the most successful infector. Concept continues to grow more rapidly than any other 

previous virus in history (Nat97). Boot viruses usually travel via diskette, while the macro 

virus is spread via email (Nat97). In fact, macro viruses can travel via all media making 

them highly contagious. MSWord macros also work on MS Word for Macintosh (Wel96). 

In the MSOffice macro exists the capability to infect multiple platforms, multiple operating 
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systems, and travel via all mediums. The rise of the macro virus has mirrored the rise of 

the Internet and the speed and international reach of email continues to contribute to the 

rapid spread of new and old macro viruses (Nat97). Although Concept was the first, many 

more have appeared, including WM.Wazzo that alters MSWord files and XM.Laroux that 

infects MSExcel worksheets. 

2.1.1.5 Multiparatite. A multiparatite, or multipartite, virus is the clas- 

sification used when a virus employs two or more infection methods (Ska96). The most 

common is for a virus to be both a file and a boot infector, although any combination of 

two or more methods is allowed under this category. The boot-file infector loads its code 

from the boot sector immediately upon system startup. It then goes resident and proceeds 

to infect files in the user's system. Executing an infected file typically loads the virus onto 

the boot sector if it is not already there before infecting other targets. SatanBug.Natas 

and Anthrax are examples of this viral type. 

2.1.2 Advanced Features. The virus advanced features have evolved over time 

as virus writers attempt to circumvent the virus hunters. The goal of these concepts is to 

make the virus spread more effectively and avoid detection for as long as possible. 

2.1.2.1 Resident. A resident program executes and then remains in mem- 

ory. It is then executed at regular intervals or by some event, such as a disk being inserted 

into a floppy drive. This is known as terminate and stay resident (TSR) in the MSDOS 

operating system. While resident, the program can watch for disk or file operations, which 

it then piggy backs its infection routine upon (Ska96). For instance, a file infector virus 

may intercept all file access routines and append its code to every file a user opens. 

2.1.2.2 Stealth. Stealth is an active defense by a virus to avoid detec- 

tion (Ska96). This can be accomplished in many ways, but usually involves intercepting 

operating system calls and redirecting them to decoy data. The Brain virus did this by 

overwriting the disk boot sector, but not before placing a copy of the original data else- 

where on the disk.   The key to its stealth was that it intercepted any calls to look at 
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the boot sector and redirected them to the copy of the original code, thereby hiding its 

infection. 

2.1.2.3 Encryption. The common method of detecting virus infections is 

through the use of a scan string. In order to avoid the pattern match, a virus needs to 

defeat the appearance check of the anti-virus scan. The self-encrypting virus does this by 

encrypting its code and encrypting it with a different key on each replication (Ska96). This 

way, the virus does not have a consistent appearance in all instances of the virus code and 

so a single string is ineffective. Additionally, storing all possible combinations of the string 

is prohibitive to the scanner. However, the encryption/decryption routine could be used 

as the scan string since altering its code would render the virus inoperable. In response to 

this threat from the anti-virus scanner, the polymorphic virus evolved. 

2.1.2-4 Polymorphism. The polymorphic virus alters its actual program 

code on each infection. The most common method is to insert assembly language routines 

that do not alter program execution, but which change the program appearance. This 

renders a generic scan string ineffective. The simplest method is to insert no operation 

or NOP commands. These are legitimate processor instructions that do no useful work. 

Therefore, a series of NOPs can be inserted, or interleaved, between actual program in- 

structions to alter the code's appearance, but not its functionality. Another method is to 

accomplish the same task through the use of alternate programming instructions. Each of 

the following commands sets an internal register to zero (Ska96). 

mov AX,  0      ;Load the AX register with 0 

xor AX, AX    ;Set the AX register to 0 logically 

sub AX, AX    ;Subtract AX from itself 

More advanced polymorphism engines are able to alter sequences of instructions, yet per- 

form the same functionality. The combinatorics of trying to find all possible combina- 

tions can render scan strings completely unusable for virus detection. There are still 

many scanners which are unable to detect V2P6 - one of the first extremely polymorphic 

viruses (Bon94). 
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2.1.3 Detection and Elimination. If a virus is spotted, it is usually quite easy to 

remove (Ska96). This has led virus programmers towards ingenious methods of infection, 

stealth, and camouflage. As a response, the anti-virus community has produced more 

complete and robust detection routines. But, however advanced, there remains only four 

basic ways to detect a virus: appearance, behavior, change, and bait (Ska96). 

2.1.3.1 Appearance. Detection by appearance is the most common method 

employed. This technique involves pattern matching between a suspected infection and 

a scan string. This scan string is a captured piece of known viral code which, hopefully, 

uniquely identifies the virus. A short string is more general and also can be compared 

faster. However, a longer string would reduce false positives. A balance on string length 

must be reached. 16 bytes has become the de facto anti-virus industry standard (KA94). 

The problem with scan strings is that they are passive and reactive. They can only 

identify viruses after the infection has occurred. Also, they can only detect known viruses 

for which signatures have been extracted. New viruses, or even new strains of known 

viruses, are left undetected. This requires constant updates to the signature database in 

order to keep up with the high viral birth rate (Ska96). On a positive note, because the 

string is from a known virus, a detection is also an identification. This knowledge can be 

used to repair the infected file based on the virus characteristics, instead of just deleting 

it. 

2.1.3.2 Behavior. All viruses must make copies of themselves and this is 

usually accomplished through low level operating system routines. These routines can be 

intercepted by the virus checker in order to monitor virus-like activity. The problem is that 

legitimate programs also need to perform these operations, such as writing to a file. The 

behavior scanner needs to be a bit more discerning by looking for more dubious actions, 

such as trying to write to an executable file. Virus-like behavior detection is also known 

as heuristics (Int98). 

Detection by behavior is an active defense. The anti-virus system is able to detect 

viral activity as it is occurring and intercept it before any damage results. The problem 
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with this method is that the scanner must always be running. This leads to overhead 

and system slow down. Additionally, intercepting system calls interferes with the normal 

operating system operation and can also interfere with user programs. 

2.1.3.3 Change. In order to insert a copy of itself into a host, a virus must 

alter something. This change is exactly what is looked for in change detection. In order to 

detect a change, the initial state, file size, file date, or checksum must be known (Ska96). It 

is easy for a virus to revert the last change date, or misreport the file size via stealth, but a 

checksum is almost impossible to subvert. The scanner typically uses a cyclic redundancy 

code (CRC) to add up all the bytes in a file an produce a single number. The odds of two 

different programs summing to the same result are so remote as to make this an effective 

means of change detection (Ska96). 

The problem with change detection is that capturing the initial state can be a some- 

what lengthy and laborious process (Ska96). All of this data must then be placed in a 

secure database somewhere and the database must be updated when any new programs 

are installed. This database can then become a target of corruption, spoofing, or infection 

by a enterprising virus. Also, it can be difficult to determine if the uninfected state was 

actually captured. If a virus sneaks in before the known safe state is captured, the infected 

file becomes the uninfected state to the change detection program. The virus has slipped 

through the defenses. Finally, change detection is useless on files which change often, such 

as data files. 

2.1.3-4 Bait. Detection by bait is a variant of detection by change that 

avoids having to capture the unchanged state of all programs in the system. In this method, 

a dummy file is allowed to be a sacrificial lamb for a lurking virus. The uninfected state 

of the dummy file is known and saved. This file is then checked regularly, or performs a 

self check, to see if it has been infected. The attractiveness of the bait can be enhanced 

by placing it in likely virus targeted directories, such as with the system files, or by using 

attractive naming conventions. Additionally, the dummy file could actually perform actions 

which attract viruses, such as executing often or performing many disk accesses (Ska96). 
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This method has several advantages, but one big disadvantage. Because the program 

is known, there is almost no chance of a false positive detection and the virus code can be 

easily isolated from the original program structure. Therefore, the exact virus signature 

can be automatically extracted and used as a scan string (KSSW97, KA94). The problem 

with this method is that there is no guarantee that the bait will be taken. The file can wait 

for long periods of time without any infections, while all the files around it are targeted. 

2.1-4 Biological Connection. The term "computer virus" was coined by Fred 

Cohen and takes its name from the entity in the biological world known for making humans 

sick (Ska96). No one argues that the computer virus is alive, but ironically biologists argue 

whether or not their viruses are actually alive as well (Ska96). Alive or not, the computer 

virus exhibits some striking similarities to simple forms of life, such as one celled organisms, 

to make the comparison valid. Clearly, the similarities between life and the computer virus 

exist, or Cohen would not have used the term initially. 

Biological entities multiply by replicating their DNA. The DNA contains all the 

definition of self and the instructions to carry out the cell's processes. The computer 

virus' DNA is its program code. The computer virus replicates by copying its program 

code. Interestingly, the information contained in the DNA of a typical biological virus, 

such as polio, would equal about 5K, the smallest biological virus would only be about 

200 bytes (Ska96). In a computer virus collection totaling 17,743 different specimens, 79% 

were less than 5K in size (Table 2). Most, 44%, were less than IK (Ref99). The smallest 

amount of code to construct a crude overwrite virus is 25 bytes. 

Computer viruses target a specific platform (DOS, Mac, etc.) and usually target 

a specific program type (EXE, COM, etc.). The biological virus also targets a specific 

species. For example, Ebola Reston only targets monkeys, while Ebola Zaire is deadly 

to humans (Pre94). Also, certain biological attacks only target specific types of cells. 

Rhinoviruses, which cause the common cold, attack the membranes in the nose, throat, 

and sometimes the lungs (Fou93). 

When a computer gets "ill," it does not necessarily need to show any obvious signs 

of infection. Likewise, an infected cell can go on living without any noticeable signs. The 
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Table 2.     Viral length statistics (Ref99). 

Size (Kbytes) Number Percentage 

Less than 1 7735 43.59% 
1-5 6360 35.85% 
5- 10 1365 7.69% 
10-25 1422 8.01% 
25-50 537   . 3.03% 
50- 75 198 ,1.12% 

75 - 100 44 0.25% 
100 - 150 34 0.19% 
150 - 200 17 0.10% 
200 - 250 7 0.04% 
250 - 300 14 0.08% 

300+ 49 0.28% 

most famous example would be Typhoid Mary, who passed on Typhoid Fever to thousands 

without showing any signs of the disease herself. 

Many biological diseases have a certain incubation period in which they he in wait 

until unloading their payload sometime in the future. The computer "disease" may also 

wait until a specific period has passed, showing no signs of infection. This may be a date, 

like the Michelango virus, or simply an event driven countdown clock (Bon94). 

Simple life reproduces through replication. Mathematically speaking, it makes mul- 

tiple copies of itself. This, in turn, leads to exponential population growth (Bac96), which 

can be seen in the growth of simple bacteria and also in the computer virus population 

numbers. 

Because computer viruses exhibit so many parallels with simple forms of life, it only 

makes sense to suppress them in a manner similar to the methodologies used by higher 

forms of life. This requires an understanding of the major functions and structures used 

by the human immune system to counter infection. An abstract view of these processes 

can then be used in a model for the operation of a computer virus immune system. 
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2.2   Human Immune System 

The human immune system provides a defense in depth framework for the protection 

of internal resources against foreign invaders. This multi-layered defense is made up of 

many individual components working together towards the common goal of protecting the 

body against these pathogens (Figure 5). The immune system consists of three defense 

levels, local barriers, inflammation (or non-specific response), and specific response (BP78). 

All levels work together to form a complete defense with one or all of them being initiated 

after the recognition of an antigen (BP78). 

Pathogens 

Barriers 
(skin) 

Physiological 
Conditions 

(pH) 

Innate 
Immune 
System 

Acquired 
Immune 
System 

$ Q V' 1 a □ 

Lymphocyte Lymphocyte 

Figure 5.     The immune system multi-layered defense (Hof97). 

An antigen is any substance that can stimulate the immune system (BP78). The 

most common antigens are proteins, such as those found in bacteria and viruses (Gor93). 

These molecules have multiple surface reaction sites, or antigen determinant sites, that act 

as interaction points for the immune system cells (BP78). 

The human immune system has the innate capability to recognize cells and proteins 

that compose the body's systems. When cells or protein substances that are not compo- 

nents of the original system are introduced, they are recognized as non-self and a defense is 
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initiated (BP78). The essence of immunology is understanding how the body distinguishes 

"self from "non-self' (BSL96). 

Immunity refers to all the mechanisms used by the body as protections against agents 

that are foreign to the body (BSL96). The mechanisms operate in solution or within cells 

to provide humoral and cellular immunity. These are further divided into innate and 

acquired immunity (Figure 6). 
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Figure 6.     Immunity type relationships (Gic98). 

2.2.1 Innate Immunity. The innate immune system is made up of all the ele- 

ments which an individual is born with and that are immediately available to recognize 

and destroy foreign invaders (BSL96, Jan93). The innate immune system has the power 

to destroy many pathogens on first encounter (Jan93). This subsystem includes barrier 

elements such as the skin, mucous membranes, and the cough reflex, but there are also 

internal components. These include as vast array of serum proteins and specialized cells. 
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An important part of innate immunity are the phagocytic cells. Phagocytes are 

amoeba-like cells that engulf and digest microbes, such as the macrophages (BSL96). The 

macrophages also signal other immune system reactions. Another part of the innate re- 

sponse is a class of blood proteins known as complement. One type of complement protein, 

when chemically stimulated, can bind to any other protein - those on bacteria as well as 

those on our own cells. This binding triggers the activity of other complement molecules 

which in turn attract the phagocytes (Jan93). The complement itself can also destroy cells 

without the services of the phagocytes by punching holes in the cellular membranes of 

invaders. This causes water to rush in and explode the cell (Jan93). Unlike microbes, our 

own cells are equipped with proteins that inactive complement, preventing the body from 

attacking self. 

All of the innate immune system components either affect pathogenic invaders di- 

rectly or enhance the effectiveness of other immune system reactions to them (BSL96). 

However effective the innate immune system is, it cannot protect against all infections. 

Microbes evolve rapidly, which enables them to devise methods to evade the innate capa- 

bilities of the immune system. To overcome this, vertebrates have developed an adaptive 

immunity. 

2.2.2 Acquired Immunity. Acquired immunity enables the body to recognize and 

respond to any microbe, even if it has never faced the invader before (Jan93). There are 

two types of acquired immunity, cell mediated and humoral mediated. The cell mediated 

response is orchestrated by the T cells. This subsystem combats fungi and most viruses. 

The humoral subsystem is organized by the B cells. They are effective against bacteria 

and some viruses. Both areas cooperate with the innate immunity components in the final 

defense of the body (BP78). The work horses of the innate and acquired immune systems 

are the white blood cells. 

2.2.3 Cellular Immunity. There are six forms of white blood cells that all derive 

from a single stem cell in the bone marrow. The first four cells offer a nonspecific response 

to infections. Neutrophils immediately engulf bacteria on contact and also send out early 

warning signals.   Monocytes evolve into macrophages that engulf antigen.   Eosinophils 
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attack various parasites. Finally, basophils contain granules of histamines and other chem- 

icals related to allergies (Hal98). The other two are lymphocytes that offer immunity tai- 

lored to a specific antigen. Lymphocytes are covered with sensitive cell-surface receptors 

that are genetically programmed to recognize different antigen. This sensitive recognition 

capability allows these T cells and B cells to form a specific response to an antigen (Hal98). 

2.2.3.1 T-Cells. T cells are so named because they mature in the thy- 

mus (BP78). Stem cells are created in the bone marrow and migrate from there to the 

thymus. In the thymus, stem cells differentiate into immature T cells. The immature T 

cells are converted to immunocompentent T cells by maturation hormones (BP78). These 

antigen matching cells are then put through a censoring process before they are released 

to the body (Figure 7). During this probationary period, the immature T cells that attack 

self proteins are eliminated. After this censoring, known as negative selection, only non-self 

reacting T cells remain (BSL96). These mature, censored, T cells leave the thymus and 

travel both the circulatory and the lymphatic systems (BP78). 

Immature T Cells 

Self-tolerant 
T Cells 

Thymus 

Figure 7.     T cell negative selection process. 

T cells coordinate the entire immune response. They send signals that promote 

antibody formation and they also eliminate viruses that hide inside infected cells (Hal98). 

There are two subtypes of T cells, Helper, or CD4 T cells, and Killer, or CD8 cells (Hal98). 

In the presence of antigen, T lymphocytes are capable of producing lymphokines. 

Lymphokines are mediator substances that facilitate the immune response and bring about 
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the destruction of the antigen. These substances attract other immune system cells, such 

as macrophages, keep them in the area, sensitize other cells, and induce the cloning of 

sensitized cells (BP78). These factors work to slowly build up the immune response. 

After a Killer T cell recognizes an antigen on the outside of a cell, bubbles known as 

granules form inside the T cell. These granules then move to the side of the cell that binded 

with the antigen. In about 5-10 minutes, all the granules have migrated to the contact side 

and then break against the membrane of the infected cell. The granules contain perfoin, 

which perforates the target cell's membrane, rupturing and killing it (Hal98). Killer T cells 

must receive a set of signals from Helper T cells in order to remain alive and replicate. If 

not, they recognize that something is wrong and commit suicide (Hal98). So, any attack 

is short lived unless the proper chemical signals are received. 

The Helper T cell is an immune system coordinator, but it must first be activated 

by binding to an antigen. After activation, Helpers generate many chemical signals. These 

have the ability to boost the number of lymphocytes by inducing cell cloning (Hal98). 

The Helper T cells also perform costimulation. B cells axe activated by two signals, one 

occurs when its antibodies bind with the appropriate antigen, and the second is a valida- 

tion signal from a Helper T cell that also binds to the antigen. Because the T cell was 

previously censored to only recognize non-self, this provides an assured confirmation of a 

valid pathogen (Hof97). 

2.2.3.2 B-Cells. B cells are so named because they develop in the bone 

marrow (Hal98). They are studded with many "Y" shaped detectors called antibodies. 

Antibodies are also known as immunoglobin. Parts of the immunoglobin chains unfold 

and expose small patches, or clefts on their surface, which make them highly specific 

antigen binders (BSL96). 

B cells are postulated to develop and specialize via clonal selection. In this process, 

there are two stages. In stage I, the stem cells develop into antigen reactive B cells. The 

B cells produce immunoglobin, which is presented on the cell surface. These cells then 

divide to produce clones that genealogically produce the same antibodies with the same 

specificity (BSL96). In stage II, the cells enter circulation. When they are activated by 

25 



www.manaraa.com

antigen contact, they multiply to proliferate memory cells or they differentiate into plasma 

cells. The activated plasma cells produce free-floating antibodies at a rate of 10 million 

per hour (Hal98). In this way, only those B cells that match antigen are reproduced or 

stimulated to produce antibodies. This reaction can take 6 to 14 days on the first encounter. 

On the second occurrence, the secondary response is greater due to a higher concentration 

of memory cells already present (BSL96). 

Working with clonal selection are two additional processes that aid the immune sys- 

tem in adapting to specific antigen. After activation, B cells can go through hypermutation 

(Figure 8). In this process, the cell reproduces itself with very high mutation rates. This 

creates daughter cells that are a little bit different than the parent and hopefully have 

a better binding affinity for the pathogen. The T cells are responsible for self tolerance, 

enforced through costimulation. This enables the B cells to hypermutate freely with the 

goal of adapting to specific antigen (Hof97). 

Activated 

Improved 
Affinity 

Figure 8.     Clonal selection with hypermutation (Hof97). 

This works within a Darwinian selection process known as affinity maturation. Those 

B cells that better match the antigen, divide to produce more memory and plasma cells. 

Those B cells that do not match soon die. Through this process, the B cells remaining in 
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the system have a higher affinity for matching pathogen protein features and are better 

able to induce a secondary response on the next encounter. 

2.2.3.3 Antigen Presenting Cells. The third type of cells involved with 

the acquired immune response are Antigen Presenting Cells (APCs), such as macropha- 

ges (BSL96). They are capable of collecting, either intentionally or because of infection, 

antigen and presenting it on the cell's surface for possible recognition by the T cells. The 

body's cells are continually building up and breaking down proteins. The APCs take in 

antigen, break them down into smaller fragments and then present these fragments on the 

cell's surface using MHC (BSL96). 

T cells recognize small peptides, but only when they are presented by the major 

histocompatibility complex (MHC). The MHC is a set of markings on the surface of a cell 

that tag it as "self and that also contain a groove for the capture and presentation of 

small protein chains, peptides (Hal98). Only when antigen are simultaneously presented 

by the piece of self in the MHC are the T cells stimulated. This requires the CD4 and 

CD8 receptors to bind with both the MHC and the foreign protein (Hal98). 

There are two classes of MHC. Humans carry 6 out of at least 200 variants of class I 

MHC and 8 out of about 230 types of class II MHC (Hal98). Class I is recognized by the 

CD8 receptors on the Killer T cells. It is expressed by all cells, which provides the body with 

global coverage (Hal98). Class I MHC is able to capture antigenic peptides floating within 

the cell's cytoplasm and transport them to the cell membrane for presentation. The Class 

II MHC is recognized by the Helper T cell's CD4 receptors. It operates in a similar manner 

as class I varieties, but it is only present in certain APCs, such as macrophages (Hal98). 

The class II MHC captures and presents antigen that has been digested within an APCs 

vacuole. The combination of the both types of MHC work together to combat more 

aggressive invaders. If a pathogen is able to break free of a macrophage's vacuole, parts of 

it are still picked up by the class I MHC and presented. This gives specific APCs two lines 

of defense against infection. 
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2.2.4 Autoimmune Disease. Autoimmune disease is the result of the components 

of the immune system perceiving self as antigenic, or non-self. The immune system then 

proceeds to destroy self as if it were foreign. Both T and B cells are implicated in this 

process (BP78). 

Artificial immune systems must eliminate any type of autoimmune reaction in order 

to be an effective solution and provide a consistent operation that is trusted by the user. 

AISs have successfully fielded models of immune system operations and avoided autoim- 

mune reactions to create biologically inspired information processing systems (Das99). In 

doing so, they have embodied the features and strengths of the immune system within a 

computation platform. 

2.3   Artificial Immune Systems 

There are several computational techniques based on biological models including 

neural networks, evolutionary algorithms, and artificial immune systems or immunological 

computation (Das99). The human immune system has been the target of considerable 

research interest in the medical community from which several theories of system behavior 

have been developed. The natural immune system has been shown to be a highly parallel 

and decentralized information processing system that can generate selective responses to 

foreign invasion (Das98). Immunological computation is working towards solving real- 

world problems by using this methodology. 

The biological model has been interpreted differently by many researchers in its trans- 

formation to the computer algorithm domain. Most of these computational models emulate 

one or more of the functional components of the biological immune system. Immunological 

systems based on the idiotypic model mirror the functions of the B cells, while Forrest's 

negative selection algorithm (Figure 9) models the interactions of T cells (FAPC94). These 

biologically inspired algorithms have been applied to many problem domains including com- 

puter security, decision support systems (Das98), multi-optimization problems (MTF96), 

anomaly detection in time series data (Das99), and fault diagnosis (Das99). While the anal- 

ogy between the immune system's biological processes and computer security or machine 

learning are fairly obvious, there are many differences between computers and biological 
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organisms which make the mapping difficult. The success of the immune system analogy 

in a computer virus immune system rests in mapping the biological processes to the correct 

level of abstraction to the algorithm domain (FAPC94). 

Self Strings (S) 

Generate 
Random Strings 

OR.) 

" Detector Set 
(R) 

Match? No 

Y« 

i' 

Rejected 

Figure 9.     Negative selection algorithm (FAPC94). 

2.3.1 Negative Selection and Imperfect Matching. Dr. Forrest's research group 

at the University of New Mexico (UNM) introduced the connection between the biological 

immune system and computer security in 1994 (SHF97). Their work has focused on the use 

of negative selection to censor self-identifying antibodies. Those that pass the censoring 

stage are used as imperfect detectors with a r-contiguous bits matching rule. Using this 

rule, string X and string Y are said to match if they agree in at least r-contiguous locations: 

X: ABADCBAB 

Y: CAGDCBBA 

In this example, X and Y match for R < 3. (FAPC94). These algorithms have been 

applied by Forrest's team to computer security (HF99), virus detection (FAPC94), and 

UNIX process monitoring (FHSL96). 

The largest problem with this approach is that it is computationally expensive to gen- 

erate all the required detectors. The analysis of the computational complexity is provided 

in (FAPC94). The number of required detectors is largely a function of the probabil- 

ity that two randomly generated strings match in at least r contiguous locations. The 

approximation holds only if M~r « 1, which is often the case. 

M = number of alphabet symbols 
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L = length of a string 

R = number of contiguous matches required 

.(L-R)(M-L) 
Pm~M- 

M+l 

This probability leads to the number of initial detector strings that must be generated 

before censoring (Nj^). The size of Nj^ is a function of the size of self (Ns), the reliability 

of the detectors (proability of a false negative detection, P/), and the probability of a 

match (PM)- 

_      -HPf) 
NRO =  

PM x (1 - PM)Ns 

Although the number of initial detectors grows exponentially with the size of self, 

Forrest points out that this complexity affords a natural defense against spoofing. It is 

nearly impossible to change self and also change the detector to match (FAPC94). Another 

observation is that the probability of detection increases exponentially with the number of 

independently running detection algorithms (iVt). 

* System fails to detect = \*f) 

Therefore, the same system protection can be achieved through a distributed set of detec- 

tors, each with a smaller number of antibodies. 

Later research uncovered two alternative algorithms for generating detector strings 

that execute in linear time (DFH96). These approaches essentially trade execution time 

for space. Both alternatives utilize data structures that grow exponentially in R, the 

number of contiguous bits in the matching rule. This paper also points out that these 

algorithms need to be fielded in a specific detection scheme. Several are suggested, but one 

of them, which mimics the organization of the BIS, suggests splitting up the antibodies 

between a number of autonomous agents, working in parallel. Another method enhances 

this approach with distributed, independent detection. Here, each agent's antibody set is 

generated independently. The biological analogy is a population of individuals, each with 
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slightly differing immune systems. The advantage with this architecture is that holes in 

one individual's detector set are covered by another's so that viral attacks cannot spread 

across entire networks. No method of cross-vaccination to protect individual computers 

containing holes is mentioned. 

2.3.2 IBM Anti Virus. Jeffry Kephart and his team at the IBM Thomas J. Watson 

Research Center have proposed a completely different immune system architecture, which 

integrates with IBM's AntiVirus product (KSSW97). The goal of this project is not a 

completely new way of fighting viruses based on the human immune system, but rather as 

a methodology to overcome the burden of detecting unknown viruses and generating scan 

strings from them (Kep94). This system uses a much looser abstraction of the biological 

model than that proposed by the UNM team. 

The IBM immune system relies upon anti-virus heuristics and integrity monitors to 

detect the arrival of a yet unknown virus. It then uses carefully placed decoy programs 

to lure the possible new virus into infecting them. These infected decoys are then stored 

so that they cannot be executed. The decoys that have ingested viruses are analogous 

to macrophages that present viral fragments to T cell classifiers via the MHC (Kep94). 

However, the IBM system uses the infected decoys to automatically extract virus signa- 

tures strings for addition to the scanner database. The new signature string is chosen 

with respect to 500MB of known "self," or corpus, in order to ensure a low false positive 

rate (KA94). When a successful string is found, it is added to the local scanner database 

and proliferated to other users via database updates. 

An automated proliferation mechanism has also been proposed that captures the 

clonal selection theory process of replicating known successful antibodies. This occurs 

via a kill signal and an accompanying vaccine (Figure 10). When an infection and sub- 

sequent viral signature extraction occurs, the neighbors of the host are notified and sent 

the new signature. If they are infected, the neighbors also in-turn propagate the new 

signature (Kep94). 

This system only weakly integrates the biological model into a CVIS. However, it does 

integrate automation into the current IBM AntiVirus methodologies, thereby extending 
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Figure 10.     Kill signal propagation (Kep94). 

their usability. However, the system is still limited by its need to maintain the virus 

scanner and the ever increasing scan string library. This represents an improvement, but 

not a revolution in current anti-virus capabilities. The other inherent flaw in this approach 

is the reliance on decoys for the capture of unknown viruses. With these sacrificial lambs, 

there is no guarantee that the virus will take the bait, which may result in a high false 

negative rate. These concerns are not addressed in Kephart's research. 

2.3.3 Self-Adaptive. Immune System. A third approach combines the negative 

selection algorithm, a genetic algorithm (GA), and the use of decoys to produce a self- 

adaptive CVIS (LMV99). Lamont, Marmelstein, and Van Veldhuizen point out the combi- 

natoric problems with the other approaches and propose a multi-level, distributed architec- 

ture to relieve the high computational burden and hopefully afford real-time performance 

(Figure 11). The architecture utilizes many different intelligent, autonomous agents to 

provide sensing, recognition, and response mechanisms for the system. 

The system of agents are managed in a 3-tiered architecture based on global, network, 

and local levels with each tier communicating though message passing. The agents at 

the local level contain all the functions necessary for tactical virus protection including 

detection, simple classification, elimination, and repair. This level relies upon decoys for 

capturing new, unknown viruses. The main purpose of the network level is to keep local 

AV agents aware of any other viruses found on the network. The network level attempts to 
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Figure 11.     A hierarchical architecture for a self-adaptive CVIS (LMV99). 

maximize antibody effectiveness within the limited memory of the system through the use 

of a GA. Finally, the network level also provides a conduit for information flow between the 

local and global levels. The focus of the global level is to generate adaptive AV resources 

and to evaluate system status. At this level, infected decoys are analyzed to extract 

signatures, which are sent down to the lower levels for fielding. The global controller also 

acts as the system warehouse for the storage of AV resources. 

The hierarchical system design follows the patterns used in many organizations. This 

structure provides a framework for distributed decision making with local processing to 

improve efficiency and effectiveness. The system allows for fluid, redundant membership in 

the organization to facilitate ease of modification or expansion. The redundancy eliminates 

single points of failure within the system services and the use of distributed agents allows 

for parallel processing to eliminate bottlenecks. 

This research proposes the use of a GA in order to perform affinity maturation on 

the decoys. The GA is used to evolve specific and generic decoy programs. The fitness of 

each decoy is evaluated as the number of files infected by the virus versus the processor 

duty cycle used by the decoy. The population of decoys subject to the GA is managed at 

the network level.  Calculating the fitness function is somewhat straightforward, but the 
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problem lies in mapping the chromosome encoding of parameters such as the file name 

and directory locations. These fields have a large number of invalid combinations which 

must be managed. Also, the GA must maintain diversity within the population to ensure 

that yet unknown viruses are discovered. This approach also inherits all of the problems 

associated with using decoys, including a non-deterministic infection rate and the limited 

scope of discovering only file infectors (one of the least prevalent viral types (Wel98)). 

Finally, the advantage of the hierarchical approach is that infection can be stopped at the 

lowest level and those processes which require large computational resources can be moved 

to dedicated machines higher up in the tree. 

2.3.4 Computer Health System. An alternative computational immune system 

architecture is based on bureaucracy, not biology (C099). The proposed Computer Health 

System (CHS) is an informal and explanatory model based on the public health system. 

This model represents an approach to the anti-virus processes of detection, prevention, and 

cure of computer system infections based on a social enterprise. It is essentially a specific 

instantiation of a hierarchical management structure, very similar to the system proposed 

by (LMV99). This structure is envisioned to provide a framework for global computer 

virus protection, while immunological computation provides the local virus detection and 

elimination resident on individual computers. 

The main goal of the CHS is to provide a framework for the protection of computer 

systems, with an emphasis on preventative strategies. These are largely implemented 

through information sharing. This requires network connectivity and secure communica- 

tion channels in order to effectively, efficiently, and confidentiality disseminate computer 

medical information. This prevention is implemented by three levels, as suggested by the 

public health system: 

• Primary - Prevention of the actual disease or injury, by reducing the exposure or 

risk level factors. 

• Secondary - Identification and control of disease processes before symptoms are ap- 

parent. 
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• Tertiary - Prevention of disability by restoring individuals to their optimal level of 

function following some kind of damage. 

The public health system has shown that prevention approaches that utilize the primary 

level of intervention have greater benefit for overall system protection. Four components 

are assigned the responsibility for implementing the CHS functions to accomplish the 

prevention levels (Figure 12). These specific areas can be mapped into the global, network, 

and local levels in the self-adaptive CVIS model (LMV99) however, the emphasis here is 

on the sharing of information to provide early prevention. 

Specialized Agencies These are organizations or research groups, linked by common 

goals and objectives, that conduct research and trend analyses of viruses; develop 

useful statistics and metrics; perform general classifications for viruses; formalize 

the methods of virus detection, extraction, and repair; provide policy guidelines and 

standards; and assign responsibilities within the CHS. 

Virus Experts This component provides a means of pooling resources and expertise. 

The virus experts are allocated the responsibilities for implementing and teaching 

preventative techniques, analyzing new viral types, extracting and diagnosing new 

viruses, and applying cures to the system after an infection. 

Infrastructure This component provides a communications backbone that supplies sys- 

tem security, information sharing, and component interfacing to all the other com- 

ponents in the model. 

Individual Systems Each computer within the CHS is equipped with a computer im- 

mune system based on the human immune system. The functions allocated to this 

component are system analysis, virus detection, self-adaptation, memory, and virus 

elimination. 

The proposed CHS is a social structure, which is built to support a CVIS present on 

individual machines. Many of these structures currently exist, such as the virus experts and 

their newsgroup alt. comp. virus, but they are not organized into a global anti-virus team 

as proposed by this model. In order to organize the current structure into an effective 

team, this research proposes several, probably government, organizations including the 
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Figure 12.     Computer Health System architecture (C099). 

Virus Prevention Agency (VPA) and the Center for Virus Control (CVC). The VPA is 

an agency based upon the Federal Emergency Management Agency with similar anti- 

viral emergency management responsibilities, while the CVC accounts for the roles of the 

Center for Disease Control and Prevention in computer health. Cardinale and O'Donnell 

do not elaborate on any implementation details of the model or how current anti-virus 

organizations and structures would be mapped into it. Interestingly, it appears that many 

of the structures proposed have already self-organized including the virus experts and the 

specialized agencies. These can be found today in the laboratories of the commercial anti- 
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virus vendors and the computer virus forums, such as Virus Bulletin. The pieces missing 

are a protocol for the transfer of virus information via the infrastructure component and a 

CVIS for the individual systems. Once these are available, a specialized agency is all that 

is required to make the CHS a reality. Unfortunately, these missing pieces are not trivial, 

technically or bureaucratically. 

As a partial answer to the current technical shortcomings of the CHS, (C099) also 

propose a machine learning approach for the generation of antibody search strings, based on 

constructive induction. The prototype system, MERCURY, is a virus detection component 

made up of a virus scanner, a constructive induction based learning engine, and a knowl- 

edge base. The induction engine, HEC, provides the scanner with byte signatures that 

distinguish between self and non-self. MERCURY is designed to provide the human im- 

mune system functions of detection, adaptation, and memory to a CVIS. MERCURY would 

have to further interface to a system that provided analysis and virus elimination/repair in 

order to fully encompass the features allocated to the CHS individual systems component. 

The constructive induction engine generates, orders, evaluates, and incorporates hy- 

potheses. This process outputs a set of detectors, based on the hypotheses that best define 

the rules of self and non-self. These detectors are then used by the virus scanner to check 

for viral infections within the file system. 

This research was not able to validate, or refute, that constructive induction provides 

a suitable learning mechanism for the generation of virus detectors. The experimentation 

did show an exponential computational complexity in the generation of hypotheses (Fig- 

ure 13). The long execution times would render MERCURY inapplicable to an unobtrusive, 

real-time implementation without algorithmic improvements. But, although it was not ef- 

ficient, this approach was effective at detecting self and non-self files within varying degrees 

of accuracy. 

2.3.5 Immunity for Machine Learning. Dr's John Hunt and Denise Cooke at the 

University of Wales, Aberystwyth have looked at the machine learning aspects of artificial 

immune systems and applied them to data mining with their ISYS project (Her96). The 

system has been used for fraud detection in mortgage loan applications and consumer pat- 
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Figure 13.     HEC hypothesis generation complexity (C099). 

tern extraction from supermarket sales data. The later is then used for targeted marketing 

campaigns. 

The ISYS system can be used in two ways. ISYS utilizes case-based reasoning that 

relies on a training set. After which, the cells can be examined for common patterns. This 

is analogous to the biological primary response. The other use is to apply the trained 

system against a new data set in order to recognize previously seen patterns. This use is 

similar to a secondary response (HC96). 

ISYS has been shown to be successful at data mining, especially over large data sets. 

Furthermore, it has outperformed neural networks in terms of learning speed (Her96). 

These successes, combined with the ability to forget unused antibody sequences, gives 

promise to a computer virus artificial immune system. 

The ISYS model emphasizes pattern matching and learning through the use of hy- 

permutation and affinity maturation. A root object is surrounded by a network of detector 

cells. These detectors produce an antibody string via an algorithm that mirrors the com- 

binatorics of the biological genetic process. The detector implements imperfect matching 

with a threshold. When a match exceeds the threshold, the cells multiply with possibly 

mutated clones. These are then added to the network (HC96). Further details are not 

given, but presumably the cells which are not activated are deleted from the network in 

38 



www.manaraa.com

Table 3.     Summary of artificial immune system features. 

UNM IBM Self- 
Adaptive 

CHS ISYS 

Emphasis Negative 
Selection 

Use        of 
Current 
Systems 

GA,    Dis- 
tributed 
Architec- 
ture 

Prevention, 
Human 
Agencies 

Data Min- 
ing 

Antibody 
Creation 

Random Capture GA Constructive 
Induction 

Case-based 
Reasoning 

Matching 
Method 

R-bits Perfect 
Match 

Not Speci- 
fied 

Perfect 
Match 

String Per- 
mutation 

Detectors Strings Decoys, 
Strings 

Decoys, 
Strings 

Strings Strings 

Clonal 
Selection 

V V V V 

Affinity 
Maturation 

V V 

Complete 
System 

V y/ V V 

Distributed Suggested V V y/ 

order to minimize resource utilization.   The reason or utility for creating a network, as 

opposed to just a list of detectors is also not given. 

2.3.6 AIS Summary. The biological model has been interpreted differently by 

many researchers in its transformation to the information system domain. The computer 

health system even suggests a model of operation based on governmental organizations. 

Due to these variations, each one has a different emphasis and offers a range of capabilities. 

A summary of the similarities and differences can bee seen in Table 3. 

2.3.7 Agent-based Immunity. The use of agents as an architecture for implement- 

ing an artificial immune system is suggested by Dasgupta (Das98). The highly parallel and 

distributed notion of the biological immune system implies that an integrated architecture 

can be viewed as a multiagent system, where separate functions are carried out by in- 

dividual agents (Das98). Furthermore, the general immune system features represent a 

model of adaptive processes at the local level, with useful behavior emerging at the global 
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level (Das99). This is similar to the description of multiagent system (MAS) operations by 

the artificial intelligence community (DeL99a). In Dasgupta's architecture, agents not only 

communicate and collaborate, but also migrate in order to further monitor and analyze 

the environment. No implementation details nor the performance issues of using mobile 

agents are addressed, but the arguments for the use of agents are compelling. 

2.4   Agents 

Despite all the research into software agents, researchers do not seem to agree on 

what exactly an agent is (FG96). One definition speaks of agents as software components 

that communicate with their peers by exchanging messages (GK95). This paper focuses 

on inter-agent communication. Another paper on mobile agents uses the definition of a 

software agent as a program that can halt itself, ship itself to another computer on the 

network, and continue execution at the new host (Ven97). The definition of an agent 

changes from paper to paper. Therefore it appears that the definition of an agent needs to 

be agreed upon up front in a discussion in order to communicate effectively therein. The 

broadest definition includes anything that can be viewed as perceiving its environment 

and acting upon that environment (RN95). Because the idea of what exactly constitutes 

an agent is controversial, it has been suggested by Rüssel and Norvig that the idea of an 

agent be used as a tool for analyzing systems, and not as an absolute delimiter between 

a world of agents and non-agents (RN95). So, to avoid absolute classification, agents are 

also typically described as possessing one or more of the following characteristics (Sun98), 

which can be used to further classify them in useful ways (FG96): 

• Autonomous 

• Adaptive/Learning 

• Mobile 

• Persistent 

• Goal oriented 

• Communicative/Collaborative 
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• Flexible 

• Active/Proactive 

Most of the current research is related to embodying agents with these qualities. But, 

to solve complex problems, groups of agents must work together, often in heterogeneous 

environments (DeL99a). 

2.4.I Multiagent Systems. Research into multiagent systems (MASs) is con- 

cerned with the study, behavior, and construction of a group of agents that interact with 

each other. Currently, the majority of agent-based research involves only a single agent, 

but the need for more complex systems that contain multiple agents that communicate 

has become a reality (Syc98). The rise of inter-networking, distributed computing, and 

the Internet has only fueled the need for more complex agent-based systems. A MAS is 

defined as a loosely coupled network of problem solvers that interact to solve problems 

that are beyond the scope of each individual agent's capabilities or knowledge (Syc98). In 

these MASs, individual agents follow their own goals and what emerges is a system level 

behavior (DeL99a). 

The use of multiple agents in a system design can bring to the implementation many 

advantages. Sycara has identified six key areas where the use of MASs has applicability or 

reveals certain advantages (Syc98): 

1. To solve problems which are too large for a single, centralized agent to solve due to 

resource limitations, performance bottlenecks, or an inherent single point of failure. 

2. To allow for the communication and interoperability between multiple existing legacy 

systems. 

3. To solve problems that can be regarded as a population of interacting agents. 

4. To provide solutions that efficiently utilize distributed information sources. 

5. To provide solutions to problems where expertise is distributed. 

6. To enhance system performance in the areas of computational efficiency, reliability, 

extensibility, maintainability, responsiveness, flexibility, and reuse. 
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The MAS advantages in the areas indicated are somewhat overshadowed by the 

challenges in MAS design. These challenges are the result of the complex interactions that 

can occur in agent populations. Sycara identifies six challenges to MAS design (Syc98): 

1. How to decompose and allocate problems among multiple agents and then synthesis 

the results? 

2. How to enable agents to communicate and therefore interact? 

3. How to ensure that agents act coherently to avoid unstable system behavior? ' 

4. How do individual agents reason about the actions of others and coordinate appro- 

priately? 

5. How are conflicts and differing viewpoints between agents resolved? 

6. How are MASs engineered and constrained? 

These challenges must be addressed during the system design process in order to create 

and effective and efficient multiagent system. 

2.4.2 Mobile Agents. Adding mobility to the agent paradigm gives the agent 

the ability to migrate autonomously from node to node on a network (KT98). Users can 

send mobile agents on a journey to roam the network on a predefined path, or a dynamic 

one based on the agent's goals. After accomplishing its defined tasks remotely, the agent 

can return to the source node to report the results (KT98). Mobile agents axe defined 

somewhat more formally as objects that have behavior, state, and location (Som97). 

Mobile agent-based computing can be viewed as an extension of remote script exe- 

cution or the remote submission of batch jobs (HCK95). Because of this legacy and the 

desire to operate in heterogeneous environments, mobile agents are typically written in a 

scripting or interpreted language. This induces a performance penalty versus the use of 

native code, but besides heterogeneous platform execution, it can also give advantages in 

the area of security (HCK95). This security advantage can be gained if the interpretation 

environment can rigorously control agent access to system resources, something the Java 

sandbox security model has not entirely been successful at (Lad97). 
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The use of mobile agents promises to reduce network use, increase synchrony between 

clients and servers, add client-specific functionality to servers, and introduce parallelism in 

program execution (KT98). Only general statements of these types are made throughout 

the literature (KT98, HCK95, Syc98, MahOO), with few applications that reap the benefits 

from this paradigm. Karnik and Tripathi state that little has been done in the area of 

quantifying mobile-agent performance tradeoffs and that at this time they believe that 

mobile-agent systems have yet to reach maturity (KT98). This is somewhat mirrored by 

the IBM study, which concludes that there are many individual areas where mobile agents 

have advantages, but none are overwhelming and that in almost every case, an equivalent 

solution can be realized through other methods, such as remote procedure calls or message 

passing (HCK95). The aggregate advantages of mobile agents as pointed out in the IBM 

whitepaper essentially boil down to the creation of a framework for personalized network 

services. This advantage is overwhelmed by disadvantages in the areas of security and 

transmission efficiency. 

The major obstacle preventing the usage of mobile agents is security (KT98). The 

ability to add client-specific functionality to servers immediately conjures up the idea 

of mobile agent viruses. This requires the use of a virus immune system and a trust 

architecture based on authentication and encryption (HCK95). The mobile agent security 

issues remain an open research area as no current systems completely address the security 

problems (KT98). 

The performance issues of packaging and sending an agent, its methods, attributes, 

and current state versus passing only data using simple datagrams have not been addressed 

or quantified (KT98). Mobile agents would only gain a network performance advantage 

when the amount of data sent via messages exceeds the agent code itself. This may only 

be true in the case of remote file system access or large database queries. In many other 

applications, the load balancing decision between remote and local agent execution may not 

be known until that point is exceeded, especially in irregular problems, such as searching. 

2.4-3 Agent Software Engineering. Agent-based systems are among the most 

complex to construct because the autonomy in the individual agent behaviors inherently 
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contributes to the overall system complexity (HJTW99). Agent-based software engineer- 

ing was created to facilitate the design of software able to operate in an environment 

where programs are written by different people, in different languages, and with different 

interfaces (GK95). 

2.4-3.1 Multiagent Systems Engineering. Multiagent Systems Engineering 

(MaSE) is a software engineering approach for multiagent systems proposed in (DeL99a). 

Much of the work in the agent field has focused around the artificial intelligence aspects 

as well as the makeup of individual agents themselves. Very little has been done in the 

area of MAS design and construction. When systems of multiple agents are constructed 

many problems arise (Section 2.4.1), as identified by Sycara (Syc98). DeLoach attempts 

to answer Sycara's sixth challenge through this research, but interestingly, problems 1 and 

2 are also addressed through the MaSE process of system decomposition. 

MaSE is an abstraction above the object-oriented (00) paradigm where agents oc- 

cupy a level above traditional objects. In so doing, the author uses a broad definition 

of agent, which may encompass whatever aspects of agenthood the user of MaSE wishes 

to implement. By modeling agents as "active objects," MaSE extends the typical object 

model of passive methods and attributes, to include goals and a common communication 

language. To do so, the common object modeling techniques of Rumbaugh and the Uni- 

fied Modeling Language (UML) are extended to include the semantics required to model 

agency, cooperative behavior, and communications. The sum total of these semantics are 

known as AgML, or Agent Modeling Language. Therefore, MaSE is an extension to UML. 

MaSE not only can be seen as a proposal for the methodology, but also as a how-to guide 

for using it to design MASs. 

The MaSE methodology is a four step process (Figure 14). One unique aspect of this 

is that the general components of the system are designed before the system itself. This 

is consistent with a MAS design as the system is made up of a population of interacting 

entities that may in fact be dynamic. The domain level design is concerned with the agent 

types, goals, and external interfaces. This is analogous to breaking a problem statement 

into objects in the traditional object-oriented analysis (OOA) methodology.   The agent 
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level design defines the components within each agent and how they interact. The com- 

ponent design completes the low level design of each agent's components. Finally, system 

design arranges the number and types of agents into an overall system framework of col- 

laborators. To accomplish these steps, AgML is used to graphically diagram each agent, 

their communication, and the system architecture. 

Duinmn I eye 1[ 
Design      1 

AgentLevel 
Design 

:(£n£btietlt; 
Design 

System     1 
Jpflpesign;-£: I 

Figure 14.     MaSE methodology (DeL99a). 

MaSE represents a new software engineering methodology for designing MASs. Be- 

cause of this, no tools to automate this process have been developed as exist for UML, 

such as Rational Rose. Additionally, the methodology is unproven in actual use. Despite 

a lack of tools and general acceptance, the methodology appears useful for MAS design 

as it could provide the rigor and visualization needed for complex multiagent software 

engineering tasks. 

2.4-3.2 Agent Design Patterns. Instead of a design process, Aridor and 

Lange propose design reuse for agent application engineering (AL98). They advocate the 

use of agent design patterns as a way to improve the agent design process and make agent 

applications more flexible, understandable, and reusable. The idea of design patterns 

originated in the 00 community and has been recognized as one of the key innovations in 

that field (AL98). Since agents have grown out of object-oriented design (OOD), it only 

makes sense to also migrate the design patterns to agent architectures. The focus of this 

paper is on the initiation of agent design patterns for mobile agent applications. Although 

targeted for mobile agents, the authors point out that the pattern idea can be applied to 

non-mobile agent systems with equal benefit. 
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The patterns proposed are decomposed into traveling, task, and interaction types. 

Of these, only the traveling patterns are mobile agent specific. The master-slave and 

plan patterns of the task type and the meeting forms of the interaction type could all be 

realized with distributed, non-mobile agents. By utilizing the master-slave pattern as a 

base, (AL98) develops a file searcher agent that searches for files in a remote file archive. 

This has a direct application to an anti-virus scanner and also a mobile agent virus itself. 

Aridor and Lange ignore the entire issue of security with these patterns. 

In addition to the issues of security and assurance, very little is said about system 

performance. The paper claims that mobile agents reduce network traffic and provide an 

effective means of overcoming network latency. This can only occur when the cost of mes- 

sage passing is greater than the cost of marshaling an agent, its methods and attributes, 

and sending the entire package down the wire. This fact is only alluded to in the applica- 

bility of interaction agent patterns and nowhere is a dynamic movement decision capability 

included in the patterns. 

Although admittedly very pioneering in the agent design field, the patterns proposed 

in this paper contain very little substance as to make them largely unusable other than to 

bring attention to the goal of constructing a design pattern library. In their current state, 

the patterns offer little to overcome the issues of mobile agents or toward answering the 

issues in multiagent system design, such as those put forth by Sycara (Syc98). 

2.4.4 Agent Development Libraries. Along with the theoretical work on agents, 

several libraries, frameworks, or agent development kits (ADKs) have been developed. 

A list of numerous academic and commercial ADKs can be found at the Agent Builder 

commercial site (Ret99). Many of the initial ADKs were developed in scripting languages, 

such as TCL or Telescript, to facilitate operation in heterogeneous environments. But, 

with its network-centricity, sandbox security model, and platform independence, Java has 

become the environment of choice for the development of agent-based tools (Som97). The 

problem with these interpreted languages is speed, and very little research has been done 

on the effects of this on high-performance computing applications. 
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2.5   Summary 

This chapter discusses background information and current research within several of 

the system integration domains. Included is background on computer viruses, the human 

immune system, and software agents. Additionally, current research related to this effort 

is reviewed in the areas of artificial immune systems and agents. These topics and ideas 

are integrated into the beginnings of the system design of an agent-based computer virus 

immune system in the next chapter. 

47 



www.manaraa.com

III.   Computer Virus Immune System Design Elements 

This chapter discusses several elements that are prerequisites to system design. These areas 

include the design methodology, problem domain definition, matching rule selection, im- 

mune system model creation, and the implementation language selection. The selection of 

each of these imposes certain restrictions on the actual system design and implementation. 

The chapter begins with a description of the system design methodology. 

3.1    Design Methodology 

A design methodology should provide a framework for defining the requirements, 

architecture, and implementation of a complete and fully operationally multiagent CVIS. 

This methodology is a process that closely follows the software engineering sequential 

model steps of analyze, design, code, and test (Pre97). However, this design also requires 

the integration of agents and their unique requirements. Therefore, the Multiagent Sys- 

tems Engineering (MaSE) process has been added into the design phase to facilitate the 

integration of agent characteristics into the system objects (Figure 15). 

Figure 15.     Design process. 

The MaSE methodology is a four step process. The domain level design is concerned 

with the agent types, goals, and external interfaces. This is analogous to decomposing 

a problem statement into objects in the traditional object-oriented analysis methodology. 
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The agent level design defines the components within each agent and how they interact. 

The component design completes the low level design of each agent's components. Finally, 

system design arranges the number and types of agents into an overall system framework 

of collaborators. To document these steps, an extension of the unified modeling language 

(UML), the agent modeling language (AgML) is used. AgML captures the agent design by 

graphically diagramming each agent, their communication, and the system architecture. 

This multi-step software engineering process begins with the analysis phase to understand 

the problem domain and the biological model being applied to it. (Figure 16). 

A     I      | ■ Understand Problem Domain 
^    1 ■ Create Biological System Model 

Figure 16.     Analysis milestones. 

Next, the MaSE methodology is followed until a final system design and deployment 

is created (Figure 17). The design phase begins with the initiation of the MaSE domain 

level design through the development of use-cases. The component level design includes a 

trade study comparing the available detector string matching rules. The best algorithm is 

integrated into antibody application operations. 

■ Domain Level Design 
Design 1 ■ Agent Level Design 

e    ■ ■ Component Design 
■ System Design 

Figure 17.     Design milestones. 

The coding phase not only includes the actual implementation of the system, but 

also an evaluation of the most appropriate implementation environment for the multiagent 

CVIS (Figure 18). 

The last step is the development and execution of the test plan. As part of this 

test plan, system performance metrics need to be developed in order to understand the 
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P   i    ~j  ■ Target Implementation Trade Study 
■ Coding 

Figure 18.     Coding milestones. 

efficiency, effectiveness, and scaleability of the system (Figure 19). But, well before testing 

can begin, the problem domain must be analyzed and understood. 

m   Develop System Performance Measures 
~Z,   7   I ■ Develop System Test Plan 
lest    1   Execute the Test Plan 

Analyze the Data 

Figure 19.     Testing milestones. 

3.2   Problem Domain 

The major objective of this prototype system is to detect the existence of non-self 

patterns within a potentially larger set of existing self patterns. The problem domain is 

over the set X of finite length symbol sequences. X is typically represented as X G {0,1}', 

or X £ {0...255}«, but the exact representation is an implementation detail. Set X 

contains two subsets, self, S C X, and non-self, N C X such that S U N — X and 

S n N = 0. The non-self patterns represent malicious, viral code, while the self set is 

indicative of legitimate, benign programs (Section 2.1). 

The task of the detection algorithm is the classification of an input pattern, I e X, 

as either self, or non-self; as either benign or malicious. Given a binary representa- 

tion, an input string I, matching threshold e, a detector set D, and a matching func- 

tion /, match(f,e,I,D) —> {malicious, benign}. The antibody detection strings, a, are 

assumed to be certified as non-self patterns via the negative selection algorithm (Sec- 

tions 2.2.3.1, 2.3.1, and Figure 9). 

7G{0,1}< 
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match(f, e, /,£>) = < 

a€{0,l}fc,        k<l 

D = {a1,a2,..-,ai},        ieN 

f(I,a)-+{p:$l\p>OAp<l} 

malicious :   /(/, a) > 1 — e 

benign: otherwise 

This detection methodology can generate two types of errors, Type I, or false positive 

errors and Type II, or false negative errors. A false positive error, 5+, occurs when a 

member of the self set, 5, is incorrectly classified as malicious. Conversely, a false negative, 

5~, is the classification of a member of the non-self set, N, as benign. 

(I £ S (1 match(f, e, /, D) = malicious) —> 5+ 

(I G N n match(f, e, /, D) = benign) —► 8~ 

The core functionality of the detection process is provided by the matching rule 

function, /. The proper selection of a pattern matching function is instrumental in reducing 

the Type I and Type II errors. 

3.3   Matching Rule Selection 

The natural immune system implements two core functions, detection and elimi- 

nation of pathogens (Section 2.2). This proposed computer virus immune system is no 

different. The crux of the problem is the detection of malicious code that has penetrated 

the boundaries of the system so that it cohabitates with a much larger self set. This is an 

application of pattern matching between a set of antibody scan strings and the set of data 

residing on the local node. 

Pattern recognition is a process by which input data is discriminated, not between 

individual patterns, but between populations. This is accomplished through a search for 

features or attributes common to members of the various populations or sets (TG74). The 

biological immune system accomplishes this through the physical and chemical binding 

of antibodies to antigen molecules.   Because of the negative selection process, a match 
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is a segregation of that molecule into the set of non-self. In the computational domain, 

this process is completed by string matching rules. Like the body, the goal is to utilize 

imperfect detectors to recognize non-self with a low false positive rate and a high probability 

of detection. 

3.3.1 Matching Rules. The many pattern matching functions come in two va- 

rieties, distance measures that express how different two sequences are, and similarity 

functions which measure how alike they are (NS93). Intuitively, objects that are close 

together in the feature space must be similar, while those that are farther apart are dis- 

similar (NS93). Those that are similar to a non-self pattern within a certain threshold can 

be classified as non-self. The matching rules investigated in this study utilize statistical, 

physical, and binary distance measures of distance or similarity. One statistically based 

similarity measure is the correlation factor, or correlation coefficient. 

3.3.1.1 Statistical. The correlation coefficient produces a number between 

-1 and 1 that relates how similar the two input sequences are. It is defined as: 

X,Ye{0...255}N,        N=l- 
o 

The most common implementation of this measure is p2, which is somewhat easier 

to compute (NS93). Other common matching rules operate at the bit level. 

3.3.1.2 Binary Distance. The correlation coefficient utilizes the byte values 

of the input and antibody strings. However, at their lowest level these strings are sequences 

of bit values. Therefore, it makes sense to utilize difference and similarity measures that 

operate in the digital domain. The most obvious is the Hamming distance, which counts 

the number of bit features that are different between two strings. Taking the complement 
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results in the number of bit positions that are alike (NS93). 

N   

Hamming Similarity = J^ (Xi 0 Y),        X, Y € {0,1}^ 

The Hamming distance is the "gold standard" for measuring the distance between 

bit strings, but to be more useful, several authors have proposed additional similarity 

measures that extend the Hamming distance to produce the relative number of features 

that match or differ (NS93). These matching functions utilize the following definitions: 

X,Y€{0,1}N 

1:   Xt = Yi = l 

0 :   otherwise 
Ci = < 

& = < 

7i = S 

1: Ai = l,Yi = 0 

0 : otherwise 

1: Xi = 0,^ = 1 

0 : otherwise 

d=zr=i^i fa 
1 :   Xi = Yi = 0 

0 :   otherwise 

These basic measures are combined into many different similarity functions with the 

goal of producing a better similarity coefficient. 

Rüssel and Rao: 
a 

f a+b+c+d 

Jaccard and Needham: 

/ = a + b + c 

Kulzinski:  A one has been added to the denominator of the author's equation to 

avoid division by zero errors.  Due to the definition of 6 and c, this will occur whenever 

there is an exact match. 

/=        a 
J      b+c+l 
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Sokal and Michener: 

Rogers and Tanimoto: 

Yule: 

/=        a + d 

a+b+c+d 

f= " + d 

a + d + 2(b + c) 

ad — be 
f =  

ad + be 

3.3.1.3 Landscape Affinity Matching. The biological immune system "iden- 

tifies" antigen by physically and chemically bonding with it. Only the correct inverse pro- 

tein structure and chemical make-up will bind with a high enough affinity to attach to an 

antibody or MHC protein. 

In most AISs, this binding is performed by bit or byte string comparisons (Kep94). 

Others extend bit matching to account for imperfect matches by using the Hamming dis- 

tance, or r-contiguous bits (HF99, FAPC94). Another extension is to present combinatoric 

variations of the non-self string to the detector in order to extend the search space of a 

specific matching function (HC96, HF99). All of these variations capture the chemical 

and physical matching process at a fairly high conceptual abstraction. Along with the 

historical matching rules, this study also introduces three more, dubbed landscape affinity 

matching. 

In this methodology, the input strings are sampled as bytes and converted into pos- 

itive integer values in order to generate a skyline, or landscape. The antibody strings 

are similarly represented. The antibody and input landscapes are compared in a sliding 

window fashion (Figure 20). 

The comparison can be made in several ways that produce and affinity measure. 

Those used are difference, slope, and physical affinity. These measurements are then 

checked against a threshold value. If the affinity exceeds the threshold, a match is declared 

(Figure 21). The input string and the antibody are sequences of bytes compared AT at a 

time. 

X,Y € {0..255}N 
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Antibody: 
Input: 

15 206.120     2 
! o;;BtfWOv-i3ti! 33 

15 206 120  2 
15,206 120-i2 91 130  0  0   0 

Affinity: 0.563 1.000 

Figure 20.     Landscape affinity matching representation and windowing. 

In the difference matching rule, the differences in the string bytes are simply summed. 

N 

Jdifference = / , \\X-i ~ *i)\ 
i=\ 

The slope matching rule looks at the differences in the changes between bytes among 

the two stings. 
JV-l 

fslope —  22 K-^i+1 ~~ Xi) - (Yi+1 - Yi)\ 
i=\ 

Physical matching stacks the two strings, like a game of Tetris, and then calculates 

the resulting gaps between the two strings (Figure 21). 

N 
/physical = Y,(X* ~ *5) + 3 X |/i|, fJ, = min{\/i, (Xi - Yi)) 

i=l 

0      5 

T 
13 

1 10 

0      5      0 

T 
12 

10    2      0 2      0      7 

0 B wtt 

0 
;•'«/•■'■' 

ill minims 
0 

Match if 
Thresholds 4 

0 + 13 + 10 = 23     5 + 12+0 = 17 2 + 0+2 = 4 

Figure 21.     Physical landscape affinity matching methodology. 
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Landscape affinity matching captures the ideas of matching the biochemical, physical 

structure and imperfect matching with a threshold for activation. The differences between 

the input landscape and the antibody "heights" can be likened to the ease of chemical 

bonding between proteins. The closer the peaks and valleys are, the greater the likelihood 

of a bond and the higher the affinity. 

3.3.2 Comparison Criteria. In order to compare these 12 selected matching rules, 

each one is calculated with a common data set. A random string of 32 bytes is generated 

as the input string. Prom this, 4 bytes are selected from positions 11-14 to act as an 

antibody string. Therefore a known exact match is always present at position 14. The 

4 byte antibody is compared with the 0 padded input string in a sliding window fashion. 

This generates 35 measurements of difference or similarity for each matching rule. 

All measurements are converted to similarity measurements and normalized so that 

a value of 1 represents an exact match, while a 0 is produced by the two most dissimilar 

strings. This test is run on 5 random input strings to produce a statistical sampling of 

the rules' performance. In order to compare the effectiveness of the various methods, an 

average signal to noise ratio (SNR) is calculated, along with a function value distribution. 

3.3.3 Results and Analysis. The SNR is a measure of a matching rule's ability 

to accurately discriminate a match signal from all the non-matches (noise). It is calculate 

as 10 times the log of the ratio of the signal power to the average noise power. In order to 

equate with communications theory, in this application the normalized rule function values 

are interpreted as voltages driving a normalized resistor. 

S 1 j     JV-i 
-=20xlog(-),        ,,= __]£ a*,        Xi^l 

The results can be seen in Figure 22. A large SNR indicates a more specific detector, 

while a low value is indicative of a general detector. A specific detector will be able to 

find a pathogen with a low false alarm rate.   As the SNR decreases, the probability of 
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generating a false positive detection increases. However, a general detector is able to cover 

a larger subset of the self/non-self space. 

Average Signal to Noise Ratios 

<» 
r* *SJ*/Sf//f <f * 

Figure 22.     Average signal to noise ratios. 

The Kulzinski measure produced a disproportionately large SNR. This measure would 

produce the most specific detector. The Hamming distance and the Sokal functions produce 

the lowest signal to noise ratio, pulling a signal only about 6dB above the noise floor. These 

would result in much higher false alarm rates on average. Interestingly, the landscape 

affinity measures did not perform much better. The r-contiguous bits rule produced a SNR 

of almost 17. The increased stringency in this rule compared to the Hamming distance, 

where matching can occur anywhere, results in a detection rule that is almost 3 times more 

specific than the Hamming distance. 

For this application, a balance between generality and specificity in the detector is 

desired, with a tendency towards the specific. A general detector allows the antibody to 

cover a greater portion of the non-self region, at the expense of possibly overlapping a 

small portion of self (false positive). For the CVIS, it is desirable to be able to increase 

the sensitivity of the detector by reducing the detection threshold. This allows the system 

to increase its awareness for a possible infection. For this reason, a matching rule with 

the ability to pull the signal out of the noise floor, but not too high is desirable. A signal 

to noise ratio between 9 and 12 is probably sufficient, which corresponds to the Rogers, 
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correlation coefficient squared, and the Jaccard measures. In order to down select among 

these, the function value distributions are plotted. 

The various values produced by the comparison functions are scaled and plotted 

using histograms in order to understand the density functions of the various measures. 

These can be seen in Figures 24 and 25. Ideally, the density function for this application 

should approximate Figure 23. This corresponds to a signal to noise ratio of 8.05dB. The 

ideal density function would allow for a low false positive rate with a smooth scaling in 

sensitivity as the detection threshold is moved to the left. In the ideal case, the density 

function value at 90%-100% should be ^ = 0.0286, which indicates only one exact match 

and all other similarity values are less than 90%. Additionally, a low variability, especially 

in the higher affinity values is desired. This would indicate consistent performance from 

the detector. 

Ideal Distribution Function 

Q3 

0Ü1   0.11-0.2 Q2M13 Q3-ML4 Q41-Q5 Q5M16 Q6U17 Q7WL8 Q81-0.9 Q91-1 

Figure 23.     Ideal matching rule distribution function. 

Evident in these histograms are the reasons for some of the signal to noise ratio values 

as well as confirmation of the generality or specificity of the matching rules. The Kulzinski 

measure's histogram dramatically depicts this rule's ability to perform as a highly specific 

detector. Likewise, the r-contiguous bits is quite heavily weighted at the lower affinity 

end. The landscape affinity physical measure produces the worst discriminator, with a 

naturally high false positive frequency along with large variability in all the other value 
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Figure 24.     Normalized matching rule distribution functions part I. 

bands. Additionally, it has an almost uniform distribution in value frequencies, indicating 

pour discrimination. The Hamming distance and Sokal's measure, which posses identical 

SNR values also show their equality in their density functions. This is because the Sokal 

and Michener function is equivalent to the normalized Hamming similarity. 

Based on their signal to noise ratios, Rogers, the correlation coefficient, and the 

Jaccard measurements are the most applicable to this application. Both the Rogers and 

Jaccard rules produce distribution functions that are only slightly better than the Ham- 
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Figure 25.     Normalized matching rule distribution functions part II. 

ming distance in terms of specificity. These two also have large gaps in their frequency 

distributions between an exact match of 1 and the values of lesser matching affinity. The 

Rogers measure is the best of the two because of its low variance in frequency values. 

The correlation coefficient squared produces a close to uniform distribution, which would 

scale well in sensitivity, but it has a very high false positive frequency. This false alarm 

rate renders the correlation coefficient unacceptable. For these reasons, the Rogers and 

Tanimoto measure is the best choice. Its density function is a fairly good approximation 
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of the ideal case, but its greatest deficiency is the gap between a positive match and the 

next lowest frequency band. This either needs to be accounted for with a scaling of the 

threshold reduction, or it allows for a sensitivity gap where the threshold would have to 

be reduced 40% before additional sensitivity is encountered. Heightened sensitivity could 

also be gained by the replacement of the Rogers function with the Sokal function. This 

would give the system the same performance as the Hamming distance if more generality 

is required. 

3.3.4    Conclusion. The Rogers and Tanimoto similarity measure is the best 

matching rule for this application. It provides a good compromise between a specific 

versus a general detector and can also accommodate increased sensitivity through detector 

threshold reduction, although a fairly large reduction is required. 

For each of these matching rules, additional mathematical operations such as squar- 

ing, scaling, or taking the absolute value can have a dramatic effect on the density function 

histogram and the signal to noise ratio. The Yule discriminator produces a value between 

-1 and 1. Scaling with the absolute value produces a density function that almost exactly 

matches the ideal case. However, this folding of the density values about the origin pro- 

duces invalid results because a value of -1, the result of two completely dissimilar strings, 

then becomes equal to an exact match. Other items to consider are the matching method- 

ology and the sensitivity of the measures. The r-contiguous bits measure is highly sensitive 

to bit changes near the middle of the string, while less sensitive at the outer edges. One 

bit flip in the middle can cut the measure's value in half, while an end bit change only 

decreases the measure by 1. Finally, the matching methodology, whether block compare or 

sliding window, can produce very different results. By only comparing in successive N-bit 

blocks, information is lost (Figure 26). Most of the functions completely miss the exact 

match at position 14 because it is sandwiched between two successive 4 byte blocks. The 

correlation coefficient comes close due to a false positive match at position 16. The block 

compare methodology would only be useful in RISC processors where instructions and 

data are aligned on predetermined boundaries. The chunk size would have to be exactly 

matched to the processor word size to be effective.   However, in CISC machines (those 
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running Microsoft DOS and Windows variants are host to the greatest number of viruses) 

instruction length is variable. Therefore, using a block compare strategy would miss im- 

portant instruction and data structures. For this problem domain, the best approach is the 

use of the Rogers and Tanimoto matching rule with a sliding window comparison strategy. 

Block Compare Results 

Offset 

Figure 26.     Output values using a four byte block comparison. 

3.4    Immune System Model Development 

3.4.I Biological Immune System Features. The components, processes, and re- 

sults of the biological immune system highlight it as an effective model for self defense. It 

is desirable to construct a computer virus immune system based on this model in order to 

overcome the reactive, non-adaptive, centralized, and monolithic nature of current anti- 

virus solutions. But, the fundamental differences between biological and digital systems 

make a mapping between these domains difficult. In order to construct an effective iso- 

morphism, the following features, functions, and organizing principles (SHF97, MVHL99) 

of the biological immune system must be understood: 

Parallel and Distributed: The immune system is a massively parallel architecture with 

a diverse set of components. These components are distributed throughout the body 

and communicate through chemical signals. 
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Multi-layered: No single mechanism offers complete immunity. Each layer operates in- 

dependently, yet also in concert with all the other components, to provide a defense 

in depth. 

Autonomous: Each entity of the immune system operates under independent control. 

There is no central authority and hence no single point of failure. The multitude of 

independent agents work together and what results is the emergent behavior of the 

immune system. 

Imperfect Detection: A detection event does not require an single exact match, but 

rather, the exceeding of an affinity threshold. Imprecise detectors allow for generality 

in the matching process, which further allows each detector to cover a larger subset 

of the non-self space. 

Safety: The system contains checks-and-balances, such as costimulation and activation 

thresholds, to ensure that detection errors are minimized. 

Diversity: Diversity in the composition of each individual's immune system ensures that 

the entire population does not succumb to the same single pathogen. Additionally, 

each immune system cell only carries one form of detector. A large population of 

cells with a diverse set of receptor types enables the body to cover a large portion of 

the non-self space. 

Resource Optimization: It is combinatorically expensive and too resource intensive to 

maintain a complete set of non-self detectors. Through the use of programmed cell 

death and cell division, the system maintains a random sampling of the search space 

at any one time. 

Self/Non-self detection: Through non-self receptor death and generation, the immune 

system has the ability to detect and respond to the presence of pathogens, even those 

which have not been encountered before. 

Selective Response: After a detection, chemical signals and the identification method 

effectively classify the antigen. This determines the exact response to an infection. 
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Memory: Memory B cells enable the immune system to "remember" past infections and 

prime the system for an improved response upon later infections by the same or 

similar antigen. 

Adaptive: The system evolves through clonal selection and hypermutation to improve 

the antigen recognition capabilities and therefore improve the overall system perfor- 

mance. 

3.4.2 Artificial Immune System Model. At a high level of abstraction, the main 

structures of the immune system map logically into information system entities (Figure 27). 

The biological immune system correlates to a CVIS, whose function is to detect and elimi- 

nate computer virus pathogens. These antigenic programs are made up of symbolic string 

(i.e. bits, bytes, or words) patterns (Section 3.2) that detection algorithms search for by 

employing pattern matching functions (Section 3.3). 

Immune system ** CVIS 

Pathogens (antigens)  * Computer viruses 

B-cells, T-cells, and antibodies  *- Detectors 

Proteins  * Strings 

Antibody/antigen binding  *■ Pattern matching 

Figure 27.     Biological to computational domain top level mapping. 

The previously identified biological immune system features, functions, and orga- 

nizing principles are further decomposed into lower-level information system entities and 

operations. The mapping between these functions and organizing principles can be seen in 

Table 4. The autonomous, multi-layered, and distributed features of the biological immune 

system intimate a distributed multi-agent system utilizing a diverse array of agent detec- 

tors. These detectors maintain "antibody" search strings that are censored at creation 

via the negative selection algorithm.  The detectors are deployed with a pattern match- 
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ing function that produces a relative affinity based on the similarity of the antibody and 

antigen strings (Section 3.3.1). 

If a detector exceeds an affinity threshold, then it is activated. If multiple antibody 

strings are activated, "affinity maturation" is used to maintain only those detector strings 

that best match the malicious code. This process and the "programmed cell death" of non- 

activated strings results in a continual searching of the non-self space along with a retention 

of only the best matching antibody strings. A match that exceeds the affinity threshold 

also requires a costimulation signal in order to reduce false positive errors. A confirmed 

valid detection results in a selective response that utilizes the best means available, either 

repair, deletion, or quarantine. A repair can occur if an exact classification of the infecting 

virus can be made and a known "antidote" algorithm is available. Otherwise, the infected 

file must be deleted, or immobilized (quarantined) in order to not pose a risk to the infected 

system or its neighbors. 

3.4.3 System Logical Hierarchy. The deployment of an agent-based CVIS should 

be distributed with redundant links and no centralized control in order to realize the 

fault tolerance and no single point of failure present in the BIS. However, a logical system 

hierarchy is require to apportion functional, management, and reporting tasks. These levels 

facilitate the dissemination of preventative information as well as the recognition and early 

suppression of computer virus epidemics (Figure 28). The hierarchy is divided into the 

system, network, and local levels that map to a larger biological abstraction (Table 5). The 

assignment of functionality to the three layers borrows from the structure and operation 

of the self-adaptive CVIS (LMV99) and the Computer Health System (C099). 

System Level - Provides health status of the community. 

- Identifies problems, durations, trends, and locations. 

- Promotes system health awareness by providing prevention information 

and sharing community status, thresholds, and vaccinations. 

- Provides a global storehouse for memory detectors. 

Network Level - Focuses on the local community of machines. 

- Sets system priorities by controlling activation thresholds and system 
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Table 4.     Biological to computation domain mapping (SHF97, MVHL99). 

Immune System Information System 

Parallel &: Distributed Distributed system software utilizing data network 
communications. Detection and elimination activities operate 
in parallel. 

Multi-layered Multiple detector types monitor various input sources (email, 
file system, boot sector, etc.). Policy guidance in order to 
implement barriers to initial infection (regular vaccinations, no 
executables in email, etc.). 

Autonomous A multiagent system of autonomous software agents. 
Imperfect Detection Detectors utilize partial string matching functions with an 

activation threshold. 
Safety Costimulation through detection alarm validation to reduce 

false positive errors. 
Diversity Each detector node generates a statistically unique set of 

non-self detectors. 
Resource Optimization The detector set repertoire is continually resampled by 

reinitializing detector strings that are not activated within a 
certain time frame. 

Self/Non-self Detection Utilize the negative selection algorithm to censor detector 
strings so that only non-self patterns remain. Employ these 
patterns through input source scanning. 

Memory, Adaption Retain detector strings that effectively match non-self. Upon 
multiple separate detector matches, only retain those with the 
highest affinity. 

Selective Response Eliminate malicious code by the best means available, such as 
repair, deletion/replacement, or quarantine. 

responses. 

- Collects local system status. 

- Reports local status to the system level. 

- Dispenses vaccinations and preventative information. 

Local Level - Responsible for detection, response, and memory. 

- Implements innate and acquired immunity through self/non-self detection. 

- Generates infection warnings. 

- Implements anti-virus responses. 

- Implements local memory. 
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Table 5.     System hierarchy domain comparison. 

Level Network Biological 

System Internet Population 
Network Subnet Community 

Local IP Individual 

System Level 
- Status Collection 
- Metric Generation 
- Information Sharing 
- Resource Warehouse 

Network Level 
- Control Local Activities 
- Collect Local Status 
- Dispense Vaccinations ^ 
- User Interface 

^=d a 
Y.J 

- Resource Request 
• Status 

«-2^-* o 

9" 
Local Level 
- Virus Detection 
- System Response  gya 

■ System Memory    JS^äS. 
3*3;" 

Messages 

- Resource Request 
- User Interaction 
- Virus AJert 

Figure 28.     Model logical hierarchy. 

3.4-4 Local Model. At the local level, detectors encompass the features of B cells, 

T cells, and antibodies into a unified detection entity. In order to reduce the overhead of 

maintaining multiple separate instances of detector objects each with a separate antigen 

receptor, each detector contains a set of detector strings. These strings are initially cen- 

sored via negative selection and also have a finite lifetime, unless they are promoted to a 

memory "cell." False positive errors are reduced through an activation threshold and an 

external costimulation requirement. These processes infer an antibody scan string lifecycle 

(Figure 29). 
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Figure 29.     Detector string lifecycle (HF99). 

3.5   Language Selection 

The development of a CVIS is a multidimensional endeavor that cuts across several 

problem domains. The language chosen to implement the prototype system must be able 

to support these diverse requirement sources and function within the target operational 

environment. The overall goal is to enable the development of a distributed agent proof- 

of-concept prototype. 

Distributed agents are the target architecture for this system (Chapter I, Sections 2.3.7, 

2.4, and 4.1). To support agent development, an object-oriented language is desired. Fur- 

thermore, in order to utilize distributed, multiagent capabilities, an effective and efficient 

communications library, or agent development kit, must be available. This library should 

run on Microsoft DOS-based computers. 

The most common target of malicious code attacks are Microsoft DOS and Windows 

based computers (Section 2.1.1). Additionally, WindowsNT and UNIX machines are often 
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Table 6.     Implementation language selection summary. 

Requirement Visual Basic c++ Java 

Object-oriented V V V 
Network Communications limited limited V 
File I/O V V >/ 
MSWindows executable V V V 
Cross-platform capability- limited V 
Fast code V 
Prototyping Fast Slow Medium 

used for file servers or network gateways for DOS clients. A language that can create 

executable programs for Microsoft machines is a necessity; support for other hardware 

and software systems is an advantage. An additional operational concern is the desire for 

unobtrusive operation. The CVIS system should be able to run in the background without 

over-utilizing system resources. 

The initial system implements file infector detection routines, so the language must 

support file system access. Future improvements could include other detectors, such as 

email or network packet scanners. Therefore, the language should contain an application 

program interface (API) to access these input sources. Additionally, the ideal language 

would support fast prototyping. The overall goal is the construction of a proof-of-concept 

system. A reduction in the project schedule and technical risk by selecting an easy to use 

and fast coding language is an advantage over some of the operational requirements. 

Only Visual Basic, C++, and Java are evaluated for selection. Other object-oriented 

or agent languages are available, such as Python or Telescript (Ret99, KT98), but in 

order to facilitate future understanding and maintenance of the code, a more mainstream 

implementation is desired. The results of the comparison, based on the previously defined 

criteria, can be seen in Table 6. 

Visual Basic's advantage is its fast prototyping capability. It is a fourth generation 

language, so it is not as fast as a lower level, compiled language. It is also solely targeted 

to Win32 platforms, so its scope is a somewhat limiting. It does provide object-oriented 

features and a rich API set, including file manipulation. Conducting network operations re- 
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quires using the WinSock ActiveX control and specifying low-level details, such as TCP/IP 

address, port, and protocol. VB's fast prototyping capability does overcome the rest of its 

limitations. 

C/C++ meets most of the requirements for the system. Network communications 

are accomplished through basic, and laborious, socket manipulation. Only one commu- 

nications library, the Adaptive Communication Environment (ACE) (Sch99), appears to 

exist for C, but there are a few more ADKs (Ret99). Their documentation however, is 

scarce. Cross-platform portability is somewhat limited as significant portions of the code 

would probably have to be rewritten to conform with alternate operating system commu- 

nications constructs. C's great advantage is fast code. However, this does not overshadow 

a slower development time combined with notoriously difficult debugging. The schedule 

risk and communications library uncertainty make C++ a good choice if speed was the 

only requirement. 

Java's weakness lies in the fact that it is a slow, interpreted language. However, 

its advantage for this project is the extensive availability of communications and ADK 

solutions. In fact, Java is quickly becoming the de facto standard for agent-based systems. 

Additionally, Java strikes a balance between the flexibility of lower level code and ease 

of use to make it a relatively fast prototyping language. Also, because it is interpreted, 

Java possesses the "write once, run anywhere" property. This feature is more than is 

required for this prototype, but provides deployment options not available in the other 

solutions. Due to the extensive communications options and relatively quick prototyping, 

Java provides the best implementation language for this project. The poor performance, 

relative to compiled languages, is a technical risk in terms of usability. But, there do exist 

just-in-time (JIT) compilers that hope to improve Java's performance limitations. This 

tradeoff is evaluated as part of the system performance testing. 

3.6   Summary 

This chapter discusses several elements that are prerequisites for system design. The 

design methodology is a combination of the waterfall model and MaSE. This allows for 

a simplified, yet complete design process that integrates an agent-based approach. Some 
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of the internal agent components are explored by specifying the computer virus problem 

domain and then choosing a viral pattern matching function that best meets the needs of 

the system. Several candidates from the pattern recognition field are investigated. The 

Rogers and Tanimoto bit-matching function is selected based on its ability to provide an 

adjustable balance between specialized and general detectors. The system and local level 

immune models are also developed. These provide the architecture to develop a distributed 

agent immune system that encapsulates the strengths of the biological model. Finally, 

Java is selected as the implementation language due to its balance between functionality 

and prototyping speed. Also, there exists a wide variety of Java-based communications 

solutions for creating a distributed system. The following chapter discusses the actual 

system design based on these elements. 
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IV.   Computer Virus Immune System Agent Design 

This chapter presents the system design and implementation through an agent-oriented 

approach. The MaSE process is followed to produce an agent-based CVIS through the 

integration of the biological models. The distributed agent architecture is enabled through 

the design of the agent communications. Several messaging libraries and implementation 

details are explored for the development of the system communications backbone. 

4-1    Agent-oriented Design 

4.I.I Domain Level Design. The domain level design encompasses identifying 

agents, their interactions, and the protocols used for this communication. The domain 

level design is begun through use-case modeling. Use-cases describe how the system is 

employed. They help decompose the system model into individual actors and objects. 

• Generate Non-self Strings 

1. The generator creates a non-self detector string. 

2. The generator tests this string against all known self. 

3. If a match on self occurs, the string is destroyed and a new string is generated. 

This process is repeated until no match occurs and the string graduates to an 

immature state. 

4. If a detector string is set to memory type, the generator adds this string to 

non-volatile storage. 

5. The generator logs all actions performed. 

• Compliment 

1. The compliment opens the input source. 

2. The compliment quickly performs pattern matching using a set of reduced length 

antibody strings. 

3. If a match occurs which exceeds a lenient affinity threshold, the compliment 

stores a pointer to the offending file. 
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4. After scanning, the compliment signals the detector with the set of possible 

infections. 

5. The compliment logs all actions performed. 

Detect Foreign Bodies 

1. The detector opens the input source. 

2. The detector performs pattern matching using one or more generated strings. 

3. If a match occurs which exceeds the affinity threshold, the detector raises a 

warning and stores a pointer to the offending file. 

4. After a designated time period, if a detector string has not been elevated to a 

memory type, the detector destroys the detector string and signals the generator 

to generate a new one. 

5. The detector logs all actions performed. 

Monitor Warnings 

1. The monitor coordinates the activities of the local agents. 

2. If a warning message is received, the monitor raises an alarm and signals the 

helper. 

3. If an alarm is received from an adjacent monitor, the local monitor decreases 

the local activation threshold. 

4. The monitor communicates the local status to the controller. 

5. The monitor logs all actions performed. 

Costimulation 

1. If an alarm is raised, the helper reports the alarm and asks for costimulation. 

2. If no costimulation is received, or a negative costimulation is received, the helper 

signals the detector to destroy the detector string. 

3. If costimulation is received, the helper signals the classifier and signals the 

detector to graduate the detector string from immature to memory state. 
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4. The helper logs all actions performed. 

• Classify 

1. The classifier gets the pointer to the infected file from the detector. 

2. The classifier compares the file data bits with known virus signatures. 

3. If a match is found, the classifier signals the repairer. 

4. If no match is found, the classifier signals the killer. 

5. The classifier logs all actions performed. 

• Remove Foreign Body/Kill 

1. The killer notifies the helper that no known cure is available. 

2. The killer asks the helper to confirm the deletion of the infected file. 

3. If a confirmation is received, the killer deletes the file. 

4. If no confirmation is recieved, the killer asks the helper to confirm the quaran- 

tining of the malicious code. 

5. If no confirmation for quarantine is received, the killer warns the administrator 

of the presence of active malicious code on the system. 

6. If confirmation for quarantine is received, the killer moves the infected file to a 

safe location and renders it unexecutable. 

7. The killer logs all actions performed. 

• Repair 

1. The repairer notifies the administrator that a known cure is available. 

2. The repairer asks the administrator to confirm the application of the repair. 

3. If a confirmation is received, the repairer repairs the file. 

4. If no confirmation is recieved, the repairer asks the helper to confirm the quar- 

antining of the malicious code. 

5. If no confirmation for quarantine is received, the repairer warns the administra- 

tor of the presence of active malicious code on the system. 
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6. If confirmation for quarantine is received, the repairer moves the infected file to 

a safe location and renders it unexecutable. 

7. The repairer logs all actions performed. 

• System Control and Reporting 

1. The controller provides metrics to the administrator on system operation. 

2. The controller provides the health status of the community. 

3. The controller provides preventative information to the monitors. 

4. The controller coordinates information passing between non-local monitors. 

5. The controller logs all actions performed. 

In the strict use-case methodology, actors are anything that communicate with the 

system, but that are external to the system itself (Pre97). However, because this is a 

system of autonomous agents, each agent also becomes an actor and the notion of a system 

is somewhat nebulous. The system is the sum total of all the parts and their actions. The 

result is a complete system architecture based on the biological model and the logical 

system hierarchy (Section 3.4.3, Figure 28). The interactions between actors/agents is 

better visualized with a use-case diagram (Figure 30). The use-case diagram is further 

used to define conversations between the identified agents. 
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The design of agent types is completed by decomposing the use-cases into individual 

agents. A base set of seven agent types are identified and the mapping of use-cases to 

agents can be seen in Figure 31. 

Generate Non-self Strings 

Detect Foreign Bodies 

Monitor Warnings 

Costimulation 

Classify 

Remove Foreign Body/Kill 

Repair 

System Control & Reporting 

Compliment 

Antibody 

Detector 

Monitor 

Helper 

Classifier 

Cleaner 

Controller 

Compliment 

Figure 31.     Decomposition of use-cases to agents. 

The Antibody agent encapsulates the generation and maintenance of search strings. 

The Detector agent uses the services of multiple Antibodies in order to scan an input string 

for malicious code. The Monitor controls the local area detection thresholds, communicates 

with the controller and other local monitors, and generates alarms to be acted upon by 

Helper agents. Helpers perform the tasks of interfacing with the administrator, such as 

soliciting costimulation in order to overcome the problems of imperfect detector strings. 

Classifiers identify the exact infector responsible and send the appropriate cleaner to fix 

the problem. Cleaners remove the virus from the system using the best means available, 

repair, deletion, or quarantine. The definition of agents types concludes with assigning 

goals and services to the individual agents. 

The agents with their goals and services can be seen in Table 7. The services provided 

by the agents are requested through interactions with other agents. These interactions are 

carried out by message passing "conversations." 

77 



www.manaraa.com

Table 7.     Agents, goals, and services. 

Agent Goals Services 

Antibody Generate, maintain, and store valid scan 
strings 

Generate 
Graduate to memory 
Destroy scan string 

Detector Detect malicious code at the input source Scan input source 
Receive vaccination 
Update detection threshold 
Destroy antibody string 
Graduate antibody string to memory 
Get pointer to input source 

Compliment Quickly scan input for malicious code Scan input source 
Monitor Coordinate the actions of a local 

neighborhood of agents 
Receive information from a Controller 
Send, process, and receive alarm messages 
Receive warning messages 
Update detector detection thresholds 

Helper Communicate with the system 
user/administrator 

Receive system information 
Receive costimualtion 
Receive action confirmation 

Classifier Implement the system response to an 
infection 

Identify infection agent 

Killer Remove viral infections Delete infected input 
Repairer Repair viral infections Repair infected input 
Controller Coordinate global system operation 

Generate system operation metrics 
Receive monitor status messages 

4-1.1.1    Agent Conversations. Agent "conversations" define possible in- 

teractions between agents (DeL99a). Conversations are used by an agent to request the 

services of another in order to fulfill its goals. Through the coordinated use of each other's 

services, the CVIS as a whole is able to detect, identify, and remove malicious code from 

the system. The required coordination is accomplished through conversations. 

The conversations are developed from the use-cases. Interagent interactions are de- 

scribed in the use-cases and shown as links on the use-case diagram (Figure 30). Each link 

becomes a conversation, or part of a more complex interaction. The use-case interactions 

generate the conversations shown in Table 8. 

The agents (Figure 31) and conversations (Table 8) derived from the use-cases are 

combined using object-oriented modeling into an agent diagram (Figure 33). Within the 

diagram, agents are modeled as objects and their conversations become associations. These 

conversations are designated using a nomenclature prefaced by a lowercase 'a' The associa- 

tions are also represented by a conversation object within the system conversations package. 
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Table 8.     Agents and their conversations. 

Conversation Initiator Receiver Description 

cRaiseWarning Detector Monitor Notify of a possible viral infection. 
cUpdateThreshold Monitor Detector An infection has occurred in an ad- 

jacent node, reduce the detection 
threshold to increase awareness. 

cCostimulation Monitor Detector A warning has been validated (not val- 
idated). 

cVaccination Controller 
Monitor 

Monitor 
Detector 

Vaccinate detectors with this string. 

cSendMessage Controller, 
Classifier, 
Monitor 
Controller 

Helper 

Monitor 

Notify the System level administrator 
with the attached text. 

Notify the Network level administra- 
tor with the attached text. 

cStatus Controller 

Monitor 

Helper 

Controller 

Display system status to the adminis- 
trator. 
Send the Network level status to the 
System level. 

cRaiseAlarm Monitor Helper Ask for costimulation. 
cConfirmation Classifier Helper Ask for verification of virus removal 

actions. 
cPassFilePointer Detector Classifier Pass the Classifier the infection loca- 

tion. 

By further modeling each conversation as an object, the power of object-orientation can 

be used to the systems's advantage. All the explicit conversations types inherit from a 

base conversation class (Figure 32). This allows common communication routines to be 

reused in all conversations. Additionally, these conversation objects become the compo- 

nents, internal to the agents, that create communication connections with other agents. 

Within each conversation, a communication protocol is defined. This protocol is made up 

of the messages required to exchange information, requests, and transactional handshakes 

between agent services. 
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Figure 32.     Agent conversation hierarchy. 
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4-1.1.2 Conversation Protocols. The final step in the domain level design 

is the definition of the protocols used in agent conversations. Conversations define an 

inherent message passing convention, agreed to by all agents that are party to the commu- 

nication (DeL99a). The MaSE methodology defines the use of state transition diagrams 

(STDs) to describe the conversation protocol. This actually requires two separate diagrams 

per conversation; one to describe the agent states involving the initiator of the conversation 

and the other for the receiver. The STDs connect message send and receive events to the 

internal agent operations. The agent services become agent object methods called within 

the conversation states (Figure 34). The remaining STDs can be found in Appendix A. 1.1. 

cS endM essage: Sender 

transmission failure *s en d(m Inform ation) 

■I» hül- 

sende m Information ) 

cSendM essage: Receiver 

*>eoeive( mComplete ) 

Wait2 

[ invalid data ] *send(trans miss ion failure) 

receive^ m Information ) 
\  

receive( mInformation ) 

>;VäHdateS endM essagei\; 

entry;xyä:li'd:a'te'(mInformation) 

[valid data ] *s end(m Com pfete) 

A. 
Process S endM ess age 

entry: dis play(mlnformation.texf) 

Figure 34.     Agent message passing conversation state transition diagram. 

These diagrams provide the connection between message receipt and agent actions, 

however missing from the STDs is a clear picture of a conversation's temporal relation- 
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ships. This is especially important for designing protocol message sequence handshaking. 

Therefore, message sequence charts are used in addition to STDs to more completely de- 

scribe the agent conversation design (Figure 35). The remaining charts can be found in 

Appendix A. 1.2. 

cSendMessage 

Notifier User Interface 

Display 

Figure 35.     Agent message passing conversation message sequence chart. 

The complete design of the agent conversations through the use of state transition 

diagrams and message sequence charts completes the domain level design. The next design 

step is the agent level design. This stage involves mapping the actions called out in the 

STDs to internal agent components (DeL99a). 

4.1.2 Agent Level Design. Agent level design encompasses designing the lower 

level details within each agent. This includes the definition of internal agent components 

and data structures required to support the defined conversations (Table 8) and services 

(Table 7). The components, methods, and attributes are suggested by the actions within 

the STD states. Additionally, other internal processing is required to support the complete 

set of agent services. The derived components, operations, and attributes can be seen in 

Table 9. These are added to the agent object diagram (Figure 36). The low level details 

of the components and methods are refined in the MaSE component design step. 
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4-1.3 Component Design. This prototype represents a first-of-a-kind system. 

Because of this, there are not any significant preexisting components available for reuse. 

This requires developing all the algorithms from scratch. Most of the operations require 

only common data processing, such as opening and closing files. However, the matching 

function, negative selection, and the scan operations are unique to this system. Addition- 

ally, the data structures required within each of the conversation messages needs further 

definition. The system source code contains all other details (Appendix B). 

4-1.3.1 Comparator. The comparator object contains a compare method 

that takes in two strings and returns the value of the Rogers and Tanimoto matching 

function. The abstract Detector agent contains a comparator component that derived 

classes, such as the FileDetector agent, utilize to perform their scanning and negative 

selection routines. 

Java does not contain an API to directly manipulate the individual bits within a 

byte. Such operations are required in order to calculate the a, b, c, and d values for the 

Rogers similarity measure (Section 3.3.1.2). A function is available that turns bytes into 

bit strings. This string must then be indexed "bit" by "bit" in order to perform the Rogers 

calculations. All of the required string operations in this methodology result in very poor 

performance. So, an improved algorithm is implemented. 

The bitwise compare method utilizes a rotating byte mask with all zeros, except for a 

single "1" bit. This mask is used with the bitwise AND function to pick off the individual 

bit values in the input strings (DD98). This bitwise operation runs significantly faster 

than the previous string conversion and comparison method. The improved algorithm is 

placed in a BitwiseCompare object that is inherited by the comparator component. This 

component is used by the FileDetector agent for scan and negative selection operations. 

4-1.3.2 Scanning. The scan and negative selection methods operate almost 

identically. Both are methods of the FileDetector agent, as opposed to the abstract De- 

tector. This is due to the dependence of these operations on the designated input stream. 
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Any future detectors for other input streams would need to implement their own unique 

versions. 

The scan method gets each byte of the file system, adds it to the sliding window, and 

compares the window against all antibody strings. If the matching function return value 

exceeds the detection threshold, the antibody and the offending file are added to a linked 

list for further processing (costimulation, identification, and repair). This prototype has a 

hard coded scan directory. This simplifies testing, but future improvements could easily 

make this a user selectable option. 

The negative selection algorithm operates essentially the same as the scan, but it 

contains a recursive element. Negative selection is sequentially called on each antibody after 

instantiation. On a self match, the antibody string is regenerated and negative selection is 

called again. The recursion bottoms out after an antibody successfully completes censoring. 

Negative selection utilizes the same hard coded scanning directory and known self is hard 

coded as files in that directory beginning with "SELF". The final components elaborated 

in this section are the conversation messages. 

4-1.3.3 Messages. The message sequence charts and the conversation state 

transition diagrams define individual messages that are passes between agents. The mes- 

sage payloads are defined by the conversations and the data that must be transformed 

within the agent states (Table 10). The contents of several message types are similar, so 

object-oriented inheritance along with abstract message types are utilized in order to max- 

imize code reuse. The complete messages and their relationships are shown in the message 

hierarchy diagram (Figure 37). 
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Table 10.     Conversation messages. 

Message Contents 

mTargetList Vector of filename 
mRaise Warning filename, String pattern 
mRaiseAlarm filename 
mValidAlarm filename 
mlnvalidAlarm filename 
mPassFilePointer filename 
mCleanTarget filename, VirusID, ActionID 
mConfirmation String text 
mActionConfirmed boolean 
mComplete 
mDestroyDetectorString String pattern 
mGraduateToMemory String pattern 
mUpdateThreshold boolean direction 
mStatus String text 
mlnformation Sting text 
mVaccination String pattern 
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The exact processing within the agents is initiated based on the type of message 

received. In Java, each object inherently knows its type. So, type checking is used within 

the conversation logic to parse messages. This methodology also leads to message types 

that contain no data. Their unique type is used for processing. With the low level agent 

components specified, the final design step is to construct a complete multi-agent archi- 

tecture based on the individual agent types and the conversations. This task is completed 

in the system design. 

4.I.4 System Design. The system can be defined as a set of any number of 

different agent types (DeL99a). The minimal set would be a Monitor and a Detector. 

However, a realistic system would include multiple instances of all the agent types running 

on distributed nodes. 

The efficient mapping of agents to physical machines requires the considerations 

of parallel algorithm design. This is accomplished through two major components, the 

identification of parallel components and the mapping of tasks to processors to minimize 

communication (KGGK94). The division of tasks into those that can operate concurrently 

occurs as part of the agent decomposition (Section 4.1.1). The second part of a good 

parallel agent deployment is the consideration of communications costs. Detectors need to 

be local to their file system to avoid passing large amounts of data (conceivably the whole 

disk) across a network. Detections are rare, so Detectors run locally and send messages to 

their associated Monitors in order to minimize network traffic. Due to I/O considerations, 

the Classifiers and Killers should also be located with the infected file. These agents 

perform file operations, which induce considerable network loading if done remotely. 

A major system consideration is the need for low resource overhead. The CVIS 

should be unobtrusive to the user. Because infections and detections are rare, Helpers, 

Killers, and Cleaners are not used often. Therefore, in order to not waste CPU cycles or 

memory on busy waiting, these agents are instantiated only when the need arises. Helpers 

only send messages and perform costimulation. It is logical that they be co-located with 

the Monitor for simplified user interaction. All these considerations are embodied in the 

physical deployment diagram (Fig 38). 
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4-2   Agent Communications Selection 

This CVIS is designed as a multiagent system. These autonomous system enti- 

ties collaborate with each other in order to produce an immune system behavior. This 

collaboration that is inherent in distributed multiagent systems requires the use of a net- 

work backbone and a communications software layer. The Java language was chosen for 

this project because it was designed to operate over networks, and hence provides com- 

prehensive network communication support (Section 3.5). However, low level TCP/IP 

socket construction, manipulation, and optimization is not the goal of this research. In 

order to develop the distributed agent-based CVIS prototype, a communications library 

that abstracts away the low level details of network comm is desired. There are many 

approaches to this problem of distributed computing including shared memory, message 

passing, distributed objects, and even agent development kits (ADKs). This section inves- 

tigates several candidate packages for the immune system agent communications layer. 

4.2.1 System Requirements. The ideal communications library would provide an 

efficient abstraction above the low level implementation issues while supporting the needs 

of agent collaboration, the immune system model, and the desire for fast prototyping. 

First and foremost is the need for low startup and transmission overhead. The bottleneck 

in many distributed applications is the communication time. Proper parallel algorithm 

design is accomplished through the identification of parallel components and the mapping 

of these entities to processors in order to minimize communications (KGGK94). This is 

accomplished as part of the system design and deployment (Section 4.1.4). In order to 

further minimize comm costs, or to not undo the efforts of effective agent decomposition, 

an efficient communications library is required. The needs of the agent design require the 

use of one-to-one and one-to-many send routines. For example, vaccinations should be 

broadcast to all the Detectors, while virus detection warnings need only be sent from a 

single Detector to a Monitor. A messaging system that only provides one-to-one capabilities 

could be used by making multiple sends to a list of recipients, but this would be less efficient, 

especially in a LAN environment where packets are broadcast to all nodes anyway. On 

the receive side, asynchronous messaging is desired.   An infection and later detection 
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of the malicious code occurs with a relatively low frequency. Responses to an infection 

are driven from the detection event. Therefore an asynchronous event driven messaging 

system is desired. Next, agents can pass these messages between each other, within possibly 

multiple separate conversations. A communication layer that supports multiple channels 

over a single connection would be ideal. 

The system is designed as a collaborating federation of agents. These agents could 

conceivably join, or leave the group at any time, for instance if workstations were turned 

off at the end of the day. For this reason, it is desired that the comm library support 

the ability to join and separate from the system, or subscribe and unsubscribe to message 

passing channels. 

Finally, with an eye to the future, the system should be able to incorporate a security 

layer. In order to make a fielded system resistant to infiltration or spoofing, encryption of 

messages and the authentication of agents would be required. Such features are beyond 

the scope of this prototype, but would be necessary in an actual deployment. 

Along with this diverse set of functional requirements, a communications layer that 

is easy to use and understand is desired. This facilitates later understanding and expansion 

of the design. The complete set of all of these communications library requirements are 

summarized in Table 11. The following candidates, segregated by type, are investigated 

as possible solutions to the communications needs of this system. 

Table 11.     Ideal communications library capabilities. 

Requirements Description 

Efficient - low overhead Efficient comm with low startup costs 
1-to-l Point-to-point messages 
1-to-many Multicast messages 
Asynchronous 
Event Driven Agents are notified of a message arrival 
Multichannel Agents can carry on multiple conversations on one connection 
Subscription Agents can join a channel and receive all messages 
High Level Abstraction Programmer does not have to utilize low-level networking 

commands 
Flat Learning Curve Simple to understand and use 
Security Layer The ability to add in security features 
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Shared Memory 

JavaSpaces 

Message Passing 

Java Shared Data Toolkit 

Message Passing Interface 

Message Oriented Middleware 

Java Message Service / Java Message Queue 

agentMOM 

Distributed Objects 

CORBA 

COM/DCOM 

RMI 

ADK 

Voyager 

Aglets 

4-2.2   Shared Memory. 

4-2.2.1 JavaSpaces. JavaSpaces is a high level library for creating collabo- 

rative applications based on a shared memory model (FHA99). JavaSpaces is a service that 

is part of Java's Jini technology. These spaces provide a persistent, shared object exchange 

location through which Java applications can cooperate. JavaSpaces are based on the tu- 

ple space concept of the Linda distributed application tool. The Linda project showed 

that a single shared memory area with a small set of simple operations can be used to 

implement many parallel and distributed applications (FH99). Additional claims are that 

this programming model can ease design, reduce debug time, and increase maintainabil- 

ity (FHA99). This is due to a very simple, intuitive API based on simple reads and writes 

to shared memory. In fact, interaction with a space involves only reading (copy), writing, 

and taking (copy with remove) (Figure 39). Processes therefore collaborate through this 

flow of objects in and out of spaces. 
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tf "ä ^ 
Figure 39.     JavaSpaces operation (FHA99). 

The read operation retrieves objects from the space via an associative lookup. The 

objects in the space are compared against a provided template. An entity that matches is 

returned by the read operation. This implies the need for a comparison operation, probably 

0(n2), on every read or take, an obvious performance penalty. 

The API also provides advanced features for transaction based operations on the 

space to ensure robustness in the face of failure. However no authentication or other 

security measures are incorporated. To do so would require a fairly significant rewrite of 

the base library classes. 

The inherent nature of shared memory makes it multicast, multichannel, and asyn- 

chronous. Additionally, the space concept provides automatic load balancing among mul- 

tiple consumers and eliminates the need to have a registry of participant addresses. Clients 

do not have to worry about multithreading, low level synchronization, or communication 

protocols; only read, write, and take. One-to-one messaging can be implemented through 

the use of appropriate pattern matching in a client take operation. Ensuring this becomes 

the problem of the system designer. An additional feature allows for timed leases on space 

entries. When the lease expires, the entry, and any copies, are deleted. 

Upon subscribing to a space, a client can be notified if an entity is added, thereby 

providing an event model of operation.  Unfortunately, all space subscribers receive this 
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notification, resulting in multiple unnecessary searches of the space for entries matching 

the respective templates. 

JavaSpaces offer a very simple programming model with relatively no learning curve. 

They also provide a very powerful distributed programming architecture, but there appears 

to be a high communication cost associated with this ease and power. JavaSpaces are 

claimed to scale naturally, just add more clients. But, the lookup and data storage of all the 

entries would probably limit the scaleability. Finally, the API does not inherently support 

security features and adding them would be a somewhat considerable task. Therefore, 

JavaSpaces meet 80% of the desired requirements (Table 12). 

Table 12.     JavaSpaces communications library capabilities. 

Requirements JavaSpaces 
Efficient - low overhead 
1-to-l V 
1-to-many V 
Asynchronous V 
Event Driven V 
Multichannel V 
Subscription V 
High Level Abstraction V 
Flat Learning Curve V 
Security Layer 

4-2.3   Message Passing. 

4.2.3.1 Java Shared Data Toolkit. The Java Shared Data Toolkit (JSDT) 

is a communications library that is designed to support collaborative applications (Bur99). 

This set of classes provides an abstraction above the basic networking functionality to offer 

communication sessions between objects, with each session capable of supporting multi- 

ple separate data channels. The low level networking communication can utilize sockets, 

hypertext transfer protocol (HTTP), light-weight reliable multicast package (LRMP), or 

remote method invocation (RMI) for its basic connection. The exact method can be spec- 

ified by the programmer during session creation. Since most of these protocols are built 

on sockets, it makes sense to utilize the basic socket for efficiency. 
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This architecture can efficiently support multicast messages with point-to-point be- 

ing a special case. There is also support for both synchronous and asynchronous message 

delivery, with the latter being the default. In the asynchronous mode, a channel con- 

sumer's dataReceived method is called when a message arrives, thereby providing an event 

driven operational model. Channel consumers indicate their interest in a particular ses- 

sionrchannel combination by subscribing to it. Additionally, the library supports managed 

sessions. A session manager can invite clients to join a session channel or even expel them 

from an existing connection. Inherent to a managed session is a security layer consisting of 

a challenge/reply authentication between the manager and the joining client. Additional 

security can be added by utilizing a secure socket layer (SSL) instead of regular, unsecure 

socket connections. Utilizing this capability is as simple as adding two source code lines 

at the beginning of a JSDT application. 

The JSDT contains an extensive API with a rich feature set that appears to cover 

all of the desired characteristics (Table 13). Operation and implementation appear to 

be straight forward with a minimal learning curve. Additionally, the system architecture 

would scale well as new sessions and consumers can simply be added. The largest question 

is that of performance of the system in terms of communication time and its ability to 

support large amounts of agents. 

Table 13.     JSDT communications library capabilities. 

Requirements JSDT 
Efficient - low overhead V 
1-to-l V 
1-to-many V 
Asynchronous V 
Event Driven V 
Multichannel V 
Subscription V 
High Level Abstraction V 
Flat Learning Curve V 
Security Layer V 

4-2.3.2   Message Passing Interface.      The Message Passing Interface (MPI) 

is a standardized and portable communications library designed for parallel computing 
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applications (SOHL+96). The MPI standard defines a set of interfaces to a wide variety 

of message-passing communications routines. The underlying code behind the interface 

allows for efficient communications. Many different implementations of MPI exist for a 

wide variety of platforms, which facilitates code portability and operation in heterogeneous 

environments. 

The basic API supports point-to-point and multicast messaging among groups. Mes- 

saging can be synchronous or asynchronous. All of these operations are initiated by calls 

that are only one layer above explicit sockets. These calls require learning a diverse set of 

125 MPI functions, although a basic application requires only six of them. The standard 

MPI library provides bindings to these functions for Fortran77 and C/C++, but a set of 

Java bindings is also available (CFKL99). This communications library, mpiJava, is a Java 

Native Interface (JNI) connection to the C/C++ MPI library (Figure 40) (Bak98). Java 

applications can make full use of the complete MPI function set through mpiJava calls. 

MPIProg.java 

Import mpi.*; 

JNI C interface 

Native MPI Library 

Figure 40.     MPIJava implementation layers (Bak98). 

MPI can provide most of the desired communications library features, however it 

does not provide an event driven architecture, a high level of abstraction, or a security 

layer (Table 14). Any form of authentication would be difficult to implement, but message 

encryption could be added before sending. These problems are not insurmountable, but 

the biggest obstacle to the use of MPI is its focus. Agent-based systems typically operate 

as a client/server architecture. Agent servers provide services to agent clients. Agents 

differ from pure client/server environments because they typically act as both a client and 

a server, depending on the situation.   The typical Java communications packages, such 

98 



www.manaraa.com

Table 14.     MPIJava communications library capabilities. 

Requirements MPI 
Efficient - low overhead V 
1-to-l V 
1-to-many V 
Asynchronous y/ 

Event Driven 
Multichannel V 
Subscription with Groups 
High Level Abstraction 
Flat Learning Curve 
Security Layer 

as sockets or RMI, work very well for this environment. By contrast, parallel computing 

applications typically utilize symmetric communication (Bak98). MPI captures this idea 

through the use of communicators and process ranks. Processes are assigned a rank based 

on when they contact the communicator. This rank is then used to determine their function 

(Figure 41). Each process runs the same code, with internal differentiation based on the 

process rank.  This model of operation makes MPI's use in an agent-based system very 

difficult. Although the API contains most of the desired functionality, these capabilities 

cannot be utilized in an autonomous agent deployment model. 

char msg[20]; 
int myrank,  tag = 99; 

MPI_Status status; 
MPI_Comm_rank  ( MPI_C0MM_W0RLD,  femyrank);  /* find my rank */ 

if (myrank == 0) { 
strcpyGnsg, "Hello World"); 
MPI_Send(msg, strlen (msg) + 1, MPI.CHAR, 1, tag, MPI_C0MM_W0RLD); 

> else if (myrank == 1) { 
MPI_Recv(msg, 20, MPI_CHAR, 0, tag, MPI_CDMM_W0RLD, ftstatus); 

} 

Figure 41.     Example MPI code (SOHL+96). 
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4-2.4    Message Oriented Middleware. 

4-2-4-1    JMS and JMQ. The Java Message Service (JMS) provides a 

common framework for Java applications to interact with an enterprise messaging sys- 

tem (Sun99c). Enterprise messaging products, commonly called message oriented middle- 

ware (MOM), are offered by a variety of vendors (Figure 42). JMS offers a common set of 

interfaces and semantics in order to access these systems. 

1. Register Interest / X Message 
Consumer 
Äsnr*u.--»...'«c! J 

Message       JA Message       S' Message       ^ 
Pubisher       $  \ f Broker f," *"        Consumer      \ 

V \ 3. Broadcast Message 
2. Publish Message » d 

^ Message       I 
Consumer      1 

Figure 42.     Message oriented middleware operation (Som97). 

The Java Message Queue (JMQ) provides a MOM solution that is JMS compli- 

ant (Sun99a). It allows clients to exchange data without the need to utilize low-level com- 

munication constructs. JMQ facilitates message passing between different threads within 

the same process, different processes within the same computer, and separate processes 

on distributed computers (Sun99b). It accomplishes this by utilizing a communication 

protocol, a router process to transfer messages, and an API library to interface with the 

Queue (such as JMS). Therefore, JMS and JMQ must work together to provide a complete 

messaging solution; JMS for message construction and JMQ for delivery. 

JMS messages contain a common header field, a properties section, and the body. 

The header is made up of 10 sub-fields such as source, destination, time stamp, message 

ID (sequence number), etc. This obviously represents considerable overhead and most 

of these fields are unnecessary for this prototype. The properties section allows for the 

addition of user-specified header fields. Finally, the body contains the actual data to be 

sent. This can be any serializable object. The rest of the JMS API consists of methods for 
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interacting with a MOM solution. JMS supports calls for all of the desired features, such 

as multicasting, subscription, security, and event driven operation. However, the actual 

implementation of these features is dependent upon the host MOM. JMS's power lies in 

its high level messaging abstraction and its ability to operate with various MOM solutions. 

Its major weakness is poor efficiency due to large numbers of unused message fields. 

The JMQ offers the implementation of the desired messaging features. It utilizes a 

data centered approach, as opposed to an address centered approach. Applications indicate 

the type of data they are sending and consequently clients subscribe to the types of data 

they wish to receive (Figure 43). This provides the capability for multichannel, one-to- 

one, or one-to-many messaging. All of these constructs work within an event-driven model 

to provide asynchronous communication. Applications must specify an event handler to 

respond to specific JMQ events, such as message recieved. 

Register 
Interest in X 

Register 
Interest in X Router 

Distribute 
Object of type X 

Router 

Process C) Process Cj 

Figure 43.     Java Message Queue subscribe operation (Sun99b). 

The JMS/JMQ combination offers a very complete and robust solution for enterprise 

messaging. But, for this application, the wide array of capabilities is not required and 

represents unnecessary overhead (Table 15). The JMS/JMQ solution is also deceptively 

simple in the literature. Message passing appears to be as easy as calling a send routine, 

yet very few details on how to fully implement a complete solution are given. Additionally, 

JMQ is only in a version 1.0 beta release. This raises questions as to its reliability, stability, 

and compliance with stated specifications. In general, JMS/JMQ offers too much capability 

and intimates a corresponding low-efficiency. 
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Table 15.     JMS/JMQ communications library capabilities. 

Requirements JMS/JMQ 

Efficient - low overhead 
1-to-l v7 

1-to-many V 
Asynchronous V 
Event Driven V 
Multichannel y/ 
Subscription V 
High Level Abstraction V 
Flat Learning Curve 
Security Layer V 

4.2.4-2 AgentMOM. AgentMOM is a communications framework devel- 

oped by the AFIT Agent Research Group (ARG) (DeL99b). It is designed to explicitly 

implement the communications required in MaSE designed systems. The hope is that 

agentMOM will be integrated with the ARG's agentTool for the automatic generation 

of agent systems. Although agentMOM is termed as a message oriented middleware for 

agents, it is actually devoid of middleware services commonly associated with MOMs, such 

as automatic message routing, or queuing. Therefore, a more correct name would be the 

MaSE agent communication environment (MACE?). 

Agents utilizing this framework implement two components, the message handler 

and the conversation (Figure 44). Agent communication occurs via conversations, as in 

MaSE. When an agent wants to collaborate, it begins a conversation as a separate thread. 

The initial message is sent across a socket connection to the recipient's message handler. 

The message handler monitors a local port for incoming messages, which it passes on to 

an agent's receiveMessage method. The receiveMessage routine processes that message 

and, if appropriate, begins the other side of the conversation in a separate thread. After 

that initial contact, the conversation is handled by the two conversation threads. Utilizing 

threads for conversations eliminates agent busy waiting during blocking communication 

calls. 

Messages in this framework are sent as the content in peer-to-peer conversations. 

AgentMOM does not directly support one-to-many, multicast, messaging.   This would 
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Figure 44.     AgentMOM operation (DeL99b). 

have to be simulated by using multiple one-to-one calls. The agentMOM architecture uti- 

lizes asynchronous, event driven messages and multichannel messaging is accommodated 

via multiple conversations all running as separate threads. AgentMOM does not use sub- 

scription based channels, instead conversations are initiated and torn down as required. 

This would potentially be more efficient if conversations are few and far between, as is the 

case with those initiated on virus detection. This lack of a subscription service also alludes 

to agentMOM's low level of abstraction. AgentMOM requires the programmer to specify 

socket addresses and ports. However, because operations are at this level, performance 

gains can be realized through tailoring of the operations to the exact problem domain. 

Additionally, this facilitates the addition of extra functionality. For instance, at this level, 

security is not implicitly offered, however, the socket constructor could easily be replaced 

by one that implements SSL. 

AgentMOM offers a medium level abstraction for agent communication. Instead of 

middleware services, as the name implies, the library provides base classes and function- 

ality to the individual agents. AgentMOM partially defines the structure of the agents 

themselves, not just the communications mechanisms. For instance, the passing of re- 

ceived messages to an agent's receiveMessage method is specified. An additional benefit of 
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the lower abstraction is performance improvements gained by a reduced number of object 

layers as well as the capability for implementation tailoring. 

This framework appears to be a good solution. It meets all the desired requirements 

except multicast, subscription, and a high level abstraction (Table 16). But, this can be 

overcome with a slight performance penalty by making multiple, individual sends. Another 

problem is the lack of a registry for subscription capabilities. The individual agents must 

know the location of the other agents in order to utilize their services. In essance, each agent 

must maintain a registry of all its peers. This is not a big problem in the CVIS architecture, 

as the location of a Detector's Monitor server should be known, and not needing to run 

a registry, or utilize its services, may provide performance increases. Overall, agentMOM 

represents a trade between ease of use and better performance. With that in mind, it 

meets most of the needs of the system, while simultaneously providing the possibility of 

good performance, and as a side benefit, implementation details for all the agents. 

Table 16.     AgentMOM communications library capabilities. 

Requirements agentMOM 
Efficient - low overhead With Tailoring 
1-to-l V 
1-to-many 
Asynchronous >/ 
Event Driven V 
Multichannel V 
Subscription 
High Level Abstraction 
Flat Learning Curve V 
Security Layer V 

4-2.5 Distributed Objects. The idea of many autonomous objects, each with dif- 

fering functionality, residing in separate address spaces, and communicating with each other 

through message passing, fits well within the distributed computing model. The object- 

oriented nature of this environment gives rise to the distributed-object model (RLC+99). 

There are several environments available for implementing distributed object computing, 
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including the component object request broker architecture (CORBA), the distributed 

component object model (DCOM), and Java remote method invocation (RMI). 

CORBA provides an extensive array of services for a distributed-object architecture. 

The advantage of CORBA is its platform neutrality. Its disadvantage is the very steep 

learning curve associated with understanding all the available services. This complexity 

was deemed unnecessary for this initial prototype. 

Both DCOM and RMI offer similar capabilities, but each has advantages and dis- 

advantages. RMI is directly tied to the Java language. It uses the Java core classes and 

methods to perform tasks. The subs and skeletons used to do the RPC object marshal- 

ing are generated automatically by RMIC, the RMI compiler. By using core Java, the 

programmer gains platform independence. 

COM/DCOM is language independent, but platform dependent. COM objects can 

be created, or used, by J++, Visual C++, and Visual Basic. However, COM is interwoven 

into the Microsoft Win32 environment. The COM API is part of the Windows API. COM 

objects require the use of the Windows Registry for their brokering, although, Microsoft 

provides COM/DCOM support for other platforms including Tru64 Unix, OpenVMS, and 

Solaris. Additionally, Saga Software1 offers DCOM solutions for many UNIX and main- 

frame platforms with its EntireX product. So, even though DCOM is tied to Windows, 

the capability for interoperability with many different platforms does exist. 

Java 1.1 provided little security outside of Java's "sandbox" restrictions. However, 

security has been increased in Java 2 with the addition of a security manager, which must 

be initialized prior to using RMI. DCOM, being closely linked to NT, uses NT's security 

services to allow specific rights to objects and users though the use of access control lists. 

This is all very flexible and easily configurable through the DCOM configuration tool, 

DCOMCNFG. 

Java requires a running RMI registry in order to provide object brokering. Server 

objects are bound or registered with it using a single function call. Clients connect to 

servers by making requests through the registry. In COM, each object and interface requires 

''www.sagasoftware.com 
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a unique 128 bit global unique identifier (GUID). This number not only must be unique, 

but also must be in a specific format. GUIGEN and UUIDGEN are provided to create 

these and help ensure uniqueness. These IDs are used as handles to call COM objects 

and interfaces. The IDs are also used to bind COM objects with the Windows Registry. 

Objects can be registered/unregistered using function calls, or with the REGSVR32. J++ 

COM wrapped objects can be registered with JAVAREG. 

With RMI, all object administration must be explicitly programmed into the appli- 

cation code, including access rights and remote functionality. User permissions must be set 

up correctly at the operating system level. DCOM however has the DCOM configuration 

tool DCOMCNFG. This provides a very easy point and click interface to control security, 

allowed object functionality, even the location of execution. This is what makes COM, 

DCOM. 

Because most viruses attack the Windows platform, tying the system to DCOM is not 

a distinct disadvantage. The availability of third party DCOM support for other platforms 

will enable system expansion to heterogeneous operating system environments. Also, the 

DCOM security model offers an advantage to the system. These security features facilitate 

protecting the CVIS from spoofing or viral attacks. These advantages, combined with 

DCOM's offering of similar services as RMI and CORBA, make DCOM a good distributed 

computing object architecture for implementing the CVIS. All three methodologies offer 

similar performance (MCD99). 

The two major weaknesses with DCOM for this project are a lack of persistence and 

the need for callbacks. In COM/DCOM, all of the objects are stateless (MCD99). They 

have a lifetime which is limited to their usefulness. On instantiation, a remote COM object 

is created. It is then used until the calling program releases it. This does not meet the 

requirements of an autonomous agent or system component persistence. If Detectors are 

continually created and destroyed, all of their associated antibodies need to be recreated 

and all the memory cells are lost. The system needs a way to maintain states. CORBA 

on the other hand offers persistence through unique object handles that allow connection 

to specific object instances. 
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The other problem is the need for object callbacks. Detectors need to be instantiated 

with a pointer back to their Monitor. This way, they are able to send a warning message if 

a virus is found. The problem lies in how other agents communicate when no pointers are 

available, such as inter-Monitor warning messages. The DCOM RPC methodology is not 

well suited for the web of communication channels required in this system. These problems 

and limitations with DCOM make it unsuitable for an agent based computer virus immune 

system. 

Although messy for system message passing, remote objects could be used effectively 

in the Helper, Classifier, and Cleaner chain. Each of these agents are used very rarely. 

When a viral detection event occurs, each of these is instantiated and is required for only 

a short period. In this case, the COM lack of persistence is actually an asset. They can 

be created when needed and removed after their tasks are performed. These agents should 

be remotely executable so that they can be placed locally with the infected file. 

The use of distributed objects and RPCs offers a very high level of abstraction to 

network communication, but does not meet many of the other ideal system requirements 

(Table 17). Each of the three methodologies offers similar capabilities, but with sub- 

stantially different learning curves and security features. The lack of persistence and the 

poor performance of these architectures make them largely unsuitable for an agent-based 

application. 

Table 17.     Distributed object communications capabilities. 

Requirements CORBA DCOM RMI 

Efficient - low overhead 
1-to-l V V V 
1-to-many 
Asynchronous 
Event Driven V V V 
Multichannel Multiple RPCs Multiple RPCs Multiple RPCs 
Subscription 
High Level Abstraction V V V 
Flat Learning Curve High Medium Low 
Security Layer V Minimal 
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4.2.6 Agent Development Kit. There exists a wide variety of libraries, frame- 

works, or agent development kits (ADKs) for use in developing agent-based systems (Ret99). 

In this section, Aglets and Voyager are investigated for use in the CVIS. These were cho- 

sen from the myriad of available specimens based on their maturity and the availability of 

adequate documentation of their features and capabilities. 

Most of the developed ADKs focus on the use of mobile agents to implement system 

functionality. One of the main tenets of parallel computing is the importance of minimiz- 

ing communication costs. With mobile agents, the entire agent program, data, functions, 

and all, must be packaged up and transported. Messages on the other hand, which only 

pass the required data, represent a much lower communication cost. In the CVIS, there is 

no advantage to mobile agents which would justify their high communications cost. Ad- 

ditionally, the security problems are large and many, which no current ADKs completely 

address (KT98) (See Section 2.4.2 for a more complete discussion of mobile agent secu- 

rity and performance limitations). Therefore, although both Aglets and Voyager support 

mobility, only their messaging features are evaluated for this project. 

4.2.6.1 Voyager. The Voyager ADK provides interagent communication 

through RPCs. In this way, only synchronous messaging can occur. Voyager agents can 

get around this limitation by using non-blocking function calls (MahOO). The non-blocking 

calls provide a placeholder for a function's return value. This placeholder can be queried 

at a later time to determine if the data is available and, if so, the data can be read. 

Voyager also supports "multicast" function calls on a group of agents. Agents can 

subscribe to, or become members of, spaces. A function can be called on all members of 

the space by calling Multicast.invoke on the space. The space then passes this call to all 

of its member agents that support the calling interface. 

The use of the Voyager API is very similar to distributed object paradigms, such as 

RMI. The Voyager server must be run on each host, similar to the RMI registry. Calls are 

then made to the server to instantiate remote agents and then interact with them. This 

presents the same problems with persistence seen in RMI and DCOM. However, Voyager 

does provide an advanced activation capability, by which calls to objects that have been 
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terminated may complete successfully.  Through the use of activation proxies, programs 

may survive restarts and continue operation without interrupting client requests (MahOO). 

Voyager does provide a security layer, but it simply restricts agent functionality 

according to whether an agent is local or remote. For instance, remote objects are not 

allowed to delete files on a local machine. Beyond this, any form of authentication or 

encryption would have to be added by the programmer. 

Voyager provides all of the capabilities of the distributed object framework, with the 

addition of groups and multicast features (Table 18). A slightly higher level of abstraction 

makes Voyager a little bit easier to use than RMI and much simpler than either DOOM 

or CORBA. However, it suffers from many of the same problems as these systems, due to 

its reliance on RPCs. The greater capability of Voyager also comes at a very high cost. 

Remote method calls involving three arguments are twice as slow using Voyager compared 

to RMI. Additionally, Voyager is greater than three times slower than socket messaging 

(HYI98). Because of its capabilities, Voyager would be a better choice than some of the 

other distributed object architectures, but because of its high overhead and the limits of 

RPCs, Voyager is unsuitable for this application. 

Table 18.     Voyager communications capabilities. 

Requirements Voyager 

Efficient - low overhead 
1-to-l v7 

1-to-many V 
Asynchronous Future Reply 
Event Driven V 
Multichannel V 
Subscription V 
High Level Abstraction V 
Flat Learning Curve Medium 
Security Layer Remote or Local Agents 

4-2.6.2   Aglets.      The Aglets agent system does not permit agents to invoke 

each other's methods (KT98). This enforces autonomy in agent behaviors. In order to per- 
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form agent collaboration, message passing is used.2 However, only synchronous, one-way, 

and future reply operations are supported. Aglets do not support multicast or subscription 

capabilities. 

Aglets do support an event driven model, although this is not in support of messaging. 

A key feature of Aglets is this event model. Specific methods are called during the Aglet 

"lifecycle." For instance, two of the methods are onCreation and onArrival. These functions 

are executed when an Aglet is instantiated and after it arrives at a new host location. 

Aglets must exist in a certain location known as a context (Smi99). Within the 

context, Aglets interact through proxies. It is through the proxies that messaging occurs. 

These operations are very straight forward; Aglets provide the intuitive sendMessage rou- 

tine. Replies can be returned by simply calling the sendReply method directly on the 

recently received message (Figure 45). 

proxy1 
dispatched 

> f™"! L    s --y ^ U 
proxy1.EendMeGsnge() horudl eMeis is age {)    { 

O <3> iserudReplyi) 

proxy2          proxy3 } 

Local Context Remote Context 

Figure 45.     Aglet message passing operation (Smi99). 

The Aglets ADK provides a message class for the construction of messages. Each 

message contains a string attribute, which indicates the agent "kind." An agent's han- 

dleMessage method can then perform specific operations by distinguishing between mes- 

sage kinds. Messages can also contain key and value pairs. These are used to hold message 

data. A key's value may be any Java object. This use of string keys represents overhead 

that must be passed around with each message. 

2Although, this is implemented as calls to an agent's message handling methods, such as handleMessage. 

110 



www.manaraa.com

The Aglets package meets most of the ideal communication package requirements for 

the system (Table 19). It provides a simple API for messaging, but provides less capability 

than Voyager. The ease of use in the Aglets package does not make up for a projected 

poor performance or a lack of support for a few of the necessary system capabilities. 

Table 19.     Aglets communications capabilities. 

Requirements Aglets 

Efficient - low overhead 
1-to-l v7 

1-to-many 
Asynchronous Future Reply 
Event Driven V 
Multichannel V 
Subscription 
High Level Abstraction V 
Flat Learning Curve Medium 
Security Layer Remote or Local Agents 

4-2.7 Conclusion. For this study, many different solutions for agent collabora- 

tion were investigated. Candidates from different architectures including shared.memory, 

message passing, message oriented middleware, distributed objects, and agent development 

kits were reviewed. The capabilities of the ten candidates were compared against a set 

of ideal system capabilities required to support the immune system model, the anti-virus 

problem domain, and distributed autonomous agents. A key concern is communications 

efficiency, which is an enabling attribute for problem decomposition, agent collaboration, 

and system scaleability. A summary of the investigation is shown in Tables 20 and 21. 

The worst library for this application is MPI. Although it provides highly optimized 

communication between processes, it is specifically tailored for symmetric parallel applica- 

tions. It has been used very successfully in parallel applications for scientific computing, 

but its constructs do not fit the client/server environment. 

Next, are the distributed object methodologies. All three of these utilize procedure 

calls on remotely instantiated classes. This requires some form of object broker to connect 

clients to servers.  Running and using this service induces extra system overhead and a 
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Table 20.     Communications library capabilities summary part I. 

Requirements JSDT JavaSpaces agentMOM JMS/JMQ MPI 

Efficient - low overhead V By Tailoring V 
1-to-l V V v7 V V 
1-to-many V V V V 
Asynchronous V V V V V 
Event Driven V V V >/ 
Multichannel V V V V V 
Subscription V V v7 Groups 
High Level Abstraction V V V 
Flat Learning Curve V V V 
Security Layer V V V 

Table 21.     Communications library capabilities summary part II. 

Requirements CORBA DCOM RMI Voyager Aglets 

Efficient - low overhead 
1-to-l V V V V V 
1-to-many V 
Asynchronous Future 

Reply 
Future 
Reply 

Event Driven v7 V V V V 
Multichannel Multiple 

RPCs 
Multiple 
RPCs 

Multiple 
RPCs 

V V 

Subscription V 
High Level Abstraction V V V V V 
Flat Learning Curve High Medium Low Medium Medium 
Security Layer V Minimal Remote or 

Local 
Remote or 
Local 

possible single point of failure. With this architecture, the biggest problem is collaboration 

between two or more already operating agents. Only CORBA can support the persistence 

of the remote object. In general, RPCs are layered on top of lower level networking 

functions and induce overhead in their attempt to make the function call appear to be 

operating locally. Because the methods on peer agents are directly manipulated, this 

architecture does not support the autonomous agent paradigms very well. 

The agent development kits directly support multiagent system construction.  The 

basic services and classes of both Voyager and Aglets facilitate ease in agent construc- 
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tion. However, these systems emphasize the functionality of agent mobility above agent 

performance. This emphasis of functionality over performance is also evident in the Java 

Messaging Service. Like Voyager and Aglets, the extensive feature set of JMS is not re- 

quired for this application, so its inherent overhead for providing those services make this 

methodology unsuitable. 

The final candidate on the cut list is JavaSpaces. This architecture is unique in that 

it uses shared memory "spaces" in order to pass data between agents. The problem with 

JavaSpaces is their efficiency. In order to read or remove an entity from a space, a template 

of the desired object is presented to the space for comparison. Only an object that matches 

this template is returned. The need to perform this matching operation on every read from 

the space creates considerable overhead above and beyond the simple networking required 

to deliver the object to and from the space. This leaves the Java Shared Data Toolkit and 

agentMOM as the only two feasible solutions. 

AgentMOM captures the idea of agent conversations and integrates this functionality 

into individual agents very well. Unfortunately, its name is somewhat deceiving as no 

messaging middleware is provided. Instead, agentMOM contains classes to implement 

multithreaded socket communications. All agents must know the address and port of the 

destination agent and explicitly call TCP/IP sockets to perform communication. This does 

not provide the one-to-many messaging, subscription naming services, or a high level of 

abstraction desired for this system. However, the JSDT does provide all of the desired 

system requirements. 

Although the Java Shared Data Toolkit provides all necessary capabilities, it does 

not integrate well into the agent conversation paradigm in its suggested implementation. 

Additionally, the JSDT multicast operation introduces problems for the anti-virus domain. 

In order to set up multicast, agents subscribe to a channel and then receive all messages 

placed on that channel. This is useful in the CVIS for operations such as dispensing 

vaccinations to all the Detector agents. However, like many security directives, such as 

AFCERT warnings, the Controller and Manager agents need to ensure compliance with 

the vaccination. This requires a conversation, including verification receipts, with every 

agent.  A multithreaded set of individual conversations with all channel subscribers can 
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more effectively support vaccination replies. Therefore, what is really needed is a combina- 

tion between the agentMOM multithreaded conversation model with the high level JSDT 

communications library constructs. 

4.2.8 CVIS Communications Design. The JSDT constructs are combined with 

the agentMOM architecture to provide a hierarchical communications network that sup- 

ports the system, network, and local CVIS levels (Section 3.4.3). By utilizing the JSDT 

session constructs, the implementation can create multiple sessions to logically isolate con- 

versations at the appropriate level (Figure 46). 

System Session 

Figure 46.     Session level logical view. 

The system level session encompasses the regional (or global) Controller agents and 

their assigned network Monitors. At the network level, various sessions connect local 

Monitors in order to pass on epidemic warning messages. Finally, many local sessions 

connect the Monitors to their assigned agents. Within these sessions, multiple channels 

are created in order to carry on interagent communications (Figure 47). Each of these 

conversations is implemented as a separate thread. 
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Figure 47.     Channel level logical view. 

The operation of conversations are based on agentMOM constructs. However, be- 

cause JSDT channels are used, the message handler is unnecessary and agents can use 

the session members list as a naming service to invite other agents to join a conversation. 

Conversations are implemented as separate threads in order to allow multiple concurrent 

conversations within a single agent. This also enables agents to better enforce account- 

ability in multicast type conversations. The following is the agent conversation process. 

1. The agent joins a session. 

2. The agent looks up the other agents in their shared session to begin a conversation 

with one (or more) of them. 

3. The agent creates a new conversation thread. 

4. The conversation creates a new managed channel within the session. 

5. The conversation invites the other agent to join the channel. 

6. The agents converse by passing messages back and forth. 

7. The initiating conversation thread expels the other agent from the channel. 

8. The conversation thread closes the channel. 

By utilizing the capabilities of the JSDT, combined with the overall architecture of 

agentMOM, a solution that meets all of the system requirements is obtained. Furthermore, 

this implementation elegantly captures the agent conversation paradigm. 
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4-3   Summary 

The complete system design is presented in this chapter. It follows the MaSE soft- 

ware engineering methodology in order to natively integrate agent concepts into the design 

process. A distributed agent computer virus immune system is designed that follows the 

system model (Section 3.4.3, Figure 28) for agent deployment and responsibility assign- 

ment. The local model (Section 3.4.4, Figure 29) for fighting viruses is encapsulated within 

the Detector agent and its associated antibodies. However, full system effectiveness is only 

accomplished through interaction among all the agents. This communication occurs in an 

architecture modified from agentMOM (Section 4.2.4.2) and implemented within the JSDT 

(Section 4.2.3.1) provided constructs. The message passing design allows for a hierarchical 

communications infrastructure. The results from testing the Java implementation of this 

design can be found in the following chapter. 
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V.   Experiments, Results, and Analysis 

The previous chapter documented the overall system design, agent decomposition, and the 

virus detection methodology. This chapter presents the system test plan along with the 

results and analysis gained through system testing. In a broad sense, the tests provide 

insight into the system efficiency, effectiveness, and scaleability. These broad categories 

are looked at within two areas, non-self detection and the distributed agent system per- 

formance. The detection algorithms are the "heart" of the system. These operate on 

every local machine within the Detector and Antibody agents. Alternatively, the agent 

performance area concerns the parallel and distributed aspects of the CVTS. This includes 

communication performance and the ability of the multiagent system to coordinate actions 

effectively. Well coordinated agents are important, but if non-self cannot be found, the 

system as a whole is of course ineffective. 

5.1    Test Plan 

A sound experimental design involves several key factors. Theses include decid- 

ing what questions are to be answered by the experiment, identifying variables that are 

influential in determining code performance, and collecting a set of applicable test prob- 

lems (CDM79). The complete test environment also needs to be specified in order to ensure 

repeatability. The set of experiments outlined in this test plan provide quantitative and 

statistical data in order to provide a basis for qualitative analysis. The analysis of the 

data gained from the test plan begins in Section 5.2. The CVIS test plan begins with the 

experimental questions. 

5.1.1 Experimental Objectives. The purpose of the system experiments is to 

understand the performance implications of the CVIS agent components and their com- 

munications. The prototype only has a limited fielding of agents, but a total system would 

include a hierarchy of many, possibly geographically separated, agents types. The objec- 

tives of system experimentation are to gain insight into the efficiency, effectiveness, and 

scaleability of an actual fielded system. These objectives lead to the following test ques- 

tions, which are expanded into test metrics: 
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Efficiency 

• What network loading does the system induce? 

• What is the system execution time? 

• What is the system scan time or scanning rate? 

• What is the system communication time to computation time ratio? 

• What are the system memory requirements? 

• What is the system response time to epidemics? 

Effectiveness 

• Is the system capable of determining self from non-self? 

• Is the system capable of detecting known and unknown non-self? 

• Is the system adaptable to a changing definition of self as programs are added? 

• Are successful detectors (antibodies) maintained? 

• Are distributed agents and the JSDT a viable architecture for a CVIS? 

• Does distributed detection improve the system through collective self-defense? 

Scaleability 

• What are the effects of adding additional agents? 

• Do system resource limitations impact scaleability? 

5.1.2 Influential Variables. The influential variables are those items that may 

be controlled, or uncontrolled, which have an affect on system performance (CDM79). 

Each of these involve engineering tradeoffs in system design and they may or may not be 

independent. The variables and some of their affects are listed below: 

Warning threshold - What level of detection is required to raise an alarm? Can affect 

Type I and Type II error rates. 
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Update time - How often axe ineffective antibodies regenerated? Need to balance ex- 

ploration and exploitation of the antibody landscape. 

Antibody length - How many bytes are there in an antibody string? Affects memory 

usage and antibody effectiveness. 

Number of antibodies in a detector - How many antibody strings are in each detec- 

tor? Affects the probability of detection. 

Number and types of agents - How many agents and what types are fielded? Affects 

almost every aspect of efficiency, effectiveness, and scaleability. 

Agent locations - Where are the agents fielded? Affects communications. 

File contents in self and non-self - What bit patterns make up self and non-self? Self 

= non-self can lead to an autoimmune reaction. 

Length of self and non-self - How large is self and the total file system? Affects scan 

time and negative selection time. 

Frequency of change in self - How often are programs and data added to the system? 

The CVIS may not be able to quickly adapt to a rapidly changing notion of self due 

to the negative selection time. 

Known virus database size - How many identification strings are stored for classifica- 

tion? Affects the classifier identification time and storage space. 

Disk I/O speed - How fast can files be read? Affects the speed of scanning, negative 

selection, and classification. 

5.1.3 Measures of Performance. Measures of performance (MOP) are a crucial 

factor in a computational experiment (CDM79). They are numeric indicators that give 

insight into system efficiency, effectiveness, and scaleability. 

Ml - What is the generated antibody diversity (Euclidean distance)? 

M2 - How do/does the number of antibodies, antibody length (byte), file system size 

(MB), and the threshold level affect the false positive (Type I) error rate? 
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M3 - How do/does the number of antibodies, antibody length (byte), file system size 

(MB), and the threshold level affect the false negative (Type II) error rate? 

M4 - How do/does the number of antibodies, antibody length (byte), and file system size 

(MB) affect the scan time? 

M5 - How do/does the number of antibodies, antibody length (byte), and size of self 

(MB) affect the negative selection time? 

M6 - What is the communications library efficiency (communications time)? 

M7 - How many simultaneous conversations can one agent support (CPU loading)? 

M8 - How does the number of agents affect the network loading (communications time)? 

M9 - How quickly are epidemics suppressed? 

MIO - How many antibody candidates are required to generate the required number of 

antibodies? 

5.1.4 Test Inputs. There are three basic sources of test problems, those that 

arise naturally in practice, ones that are specially constructed to test a particular aspect of 

the code, and finally, randomly generated problems (CDM79). Additionally, it is desired 

to test this new application against a common industry benchmark. This test plan uses 

all four. 

The test problems for a CVIS are sets of self and non-self strings. In order to test the 

operation of the antibodies, some are assigned to predetermined values. To test the CVIS's 

ability to function in a large search space, randomly generated sequences are used. Finally, 

the system is tested against actual user programs and viruses in order to understand the 

system's applicability to the real world problem domain. The complete set of test inputs 

can be seen in Table 22. 

Of particular use for the real world problem set is the European Institute for Com- 

puter Anti-Virus Research (EICAR) standard anti-virus test file (Duc99). This file contains 

of a set of 68 bytes of ASCII printable characters: 

X50!P7,@AP[4\PZX54(P~)7CC)7}$EICAR-STANDARD-ANTI-VIRUS-TEST-FILE!$H+H* 
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Table 22.     Test inputs. 

Number Description Purpose 

1 Self-Mil's 
Non-self - All O's 

Does negative selection, detection, 
costimulation, and memory work? 

2 Self-Mil's 
Non-self - Random characters 

Does the CVIS detect a diverse threat? 

3 Self - same as Non-self Does the CVIS suppress autoimmunity? 
4 Self - Randomly generated 

Non-self - Randomly generated 
Does CVIS operate in a large search 
space? 

5 Self - Application program suite 
Non-self - EICAR test program 

Does CVIS operate correctly in a real 
world environment? 

6 Self - Application program suite 
Non-self - TIMID virus 

Comparison of this CVIS to other 
research. 

The purpose of the file is to provide a safe target for testing the operation of anti-virus 

software. The file is easy to use and non-infecting. It is an executable COM file that only 

prints the message EICAR-STANDARD-ANTI-VIRUS-TEST-FILEL Most commercial 

anti-virus software products have scan strings that recognize the EICAR test pattern. 

One of the key reasons for utilizing an immune system model of operation is to 

recognize as of yet unknown viruses. Therefore, a modified version of the EICAR test 

string is used as a new, unknown "virus." For this purpose, EICAR was modified so that it 

now prints Paul Harmer-s test Virus XxXxXxXx!! instead. This new non-infecting strain 

of EICAR goes undetected by Norton AntiVirus. 

Testing the system against a common industry benchmark is desired in order to 

compare the efficiency and effectiveness of the proposed CVIS against other solutions. 

Unfortunately, there does not exist such a baseline. This prototype represents one of the 

first CVISs constructed. However, tests were performed in (FAPC94) in order to validate 

their r-contiguous bits theoretical derivations against actual data. For these tests, the 

TIMID virus (Lud96) was used to infect COM files. The algorithm was run against a 

varying number of antibody strings in order to discover the probability of failure, Pf = 

1 — Pdetection-, and the initial number of immature antibodies required to create a desired 

number of naive strings after negative selection.   These same tests are run against the 
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agent-based CVIS in order to compare it with the UNM work and to test the system using 

an actual file infector virus, TIMID. 

TIMID is a simple file infecting virus (Lud96). It only infects one file on each execu- 

tion. Its targets are COM files residing only in TIMID's local directory. It does not hop 

across directory structures. Additionally, TIMID has the nice feature of outputting the 

name of its victim. 

TIMID is an appending file infector that adds 5 bytes to the top of a file and an 

additional 300 to the end. No stealth capabilities are employed, so victim files sizes can 

be seen to grow by 305 bytes, along with an appropriate file date alteration. All these 

features make TIMID an excellent test subject because it can be controlled and its effects 

are known. Furthermore, it is a commonly known virus that can be detected and removed 

by all current AV suites. TIMID, EICAR, and the generated problem sets become inputs 

to the test cases. 

5.1.5 Test Cases. The test cases are designed to gather data for every MOP. 

In each test case, either an influential variable is changed, or a static system property is 

measured to understand system performance. Each test case may cover more than one 

MOP and it may also gather more than one data point. The test cases are enumerated in 

Table 23. 

Each test is run multiple times in order to account for statistical variations in system 

performance. From this data, an average, a high, a low, and the variance are computed. 

These are used to understand the statistical significance of the system performance mea- 

surements. 

5.1.6 Testing Platform. The CVIS is tested on the AFIT Bimodal Cluster (ABC) 

pile of PC's. This is a heterogeneous system consisting of 22 variously configured Pentium 

II and Pentium III CPUs connected by a fat tree Gigabit and lOObaseT switched Ethernet 

backbone (Figure 48). The ABC is under constant development with a rapidly changing 

system configuration. However, the complete system depicted in Figure 48 is expected 

to be available for CVIS testing.  Each machine within the cluster is dual bootable as a 
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Table 23.     Test cases. 

Number MOP Input Measurements/Desired Output Variable 

1 1 Is the system capable of determining self 
from non-self? 

2 2 Can a diverse threat be detected? 
3 3 Does the CVIS suppress autoimmunity? 
4 5 Can known and unknown viruses be de- 

tected? 
EICAR vs. 
EICARnew 

5 Ml 4 Distance between detector antibodies Generation 
method 

6 M2, M3 4 Type I and Type II error rate vs. number 
of antibodies 

Number of 
antibodies 

7 M2, M3 .   4 Type I and Type II error rate vs.  anti- 
body length 

Antibody 
length 

8 M2, M3 4 Type I and Type II error rate vs.   file 
system size 

File system 
size 

9 M2, M3 4 Type I and Type II error rate vs. thresh- 
old level 

Threshold 
level 

10 M4 4 Scan time vs. Number of antibodies Number of 
antibodies 

11 M4 4 Scan time vs. antibody length Antibody 
length 

12 M4 4 Scan time vs. file system size File system 
size 

13 M4 4 Negative selection time vs. number of an- 
tibodies 

Number of 
antibodies 

14 M4 4 Negative selection time vs.     antibody 
length 

Antibody 
length 

15 M4 4 Negative selection time vs. size of self Size of self 
16 M7 Processor loading vs. number of simulta- 

neous agent connections 
Number of 
agents 

17 M8 1 Communications time vs.  number of si- 
multaneous agent connections 

Number of 
agents 

181 M9 1 Epidemic elimination time 
19 M10 6 Number of immature antibodies required 

to generate a number of antibodies 
Number of 
antibodies 

1. Test 18 was not completed due to time constraints. 

Windows NT or Red Hat Linux system. All systems are booted as NT systems to reflect 

the most common virus target platform and current Air Force server standards. 
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The ABC is a closed environment that is representative of a PC LAN network, 

the target implementation platform of the CVIS. Increasing the test platform to include 

Win95, Linux, or even Solaris machines would be a good test suite for understanding the 

performance of the CVIS in the enterprise environment. 

For this project, the complete agent deployment utilizes 13 machines, as depicted in 

the physical system deployment diagram (Figure 38). CPUs and their associated agents 

are added to the system up to the complete deployment to test the system scaleability. 

The configurations of the machines are shown in Tables 24 and 25. 

Table 24.     Pile of PCs machine configurations part I. 

Feature ABC-A1 ABC-A3 ABC-A4 ABC-A5 ABC-B5 ABC-B6 

CPU Dual PHI 600 PHI 600 PHI 600 PHI 600 PHI 600 PHI 600 
Cache 512K 512K 512K 512K 512K 512K 
RAM 256MB 384MB 384MB 384MB 384MB 384MB 
HD 25.5GB 6.5GB 6.5GB 6.5GB 6.5GB 6.5GB 
OS 1 2 2 2 2 2 

1. Windows2000 Advanced Server 
2. Windows2000, RedHat Linux 6.1 
3. WindowsNT 4.0 Workstation, RedHat Linux 5.2 

Table 25.     Pile of PCs machine configurations part II. 

Feature ABC-B7 ABC-B8 ABC-B9 ABC-C1 ABC-C2 ABC-C3 ABC-C4 

CPU PHI 600 PHI 600 PHI 600 PII 400 PII 400 PII 450 PII 400 
Cache 512K 512K 512K 512K 512K 512K 512K 
RAM 384MB 384MB 384MB 128MB 128MB 128MB 128MB 
HD 6.5GB 6.5GB 6.5GB 8.4GB 8.4GB 6.9Gb 8.4GB 
OS 2 2 2 3 3 3 3 

5.1.7 Compiler and Runtime Environment. All code is developed using IBM's 

VisualAge for Java version 2.0 (see Section 3.5 for the Java language selection study). 

There are no compiler optimization settings. The Java JDK vl.1.8 is used as the Java 

Virtual Machine (JVM) runtime environment. This version utilizes Symantec's just in 

time (JIT) bytecode compiler as the default in order to improve runtime performance. 

There are many options for JVMs and compilers, but it is not the purpose of this research 

125 



www.manaraa.com

to evaluate different Java platforms. Although not contained in this test plan, alternate 

Java runtime environments could be used to possibly enhance system performance. Several 

different JIT compilers are available, such as IBM's Jikes compiler. Another option, since 

platform independence is not a goal, would be to use a native code compiler, such as the 

one available from the GNU organization. These are not considered in this prototype 

implementation, but could be considered in future research. 

5.2    Virus Detection 

The ability to effectively detect non-self is the primary goal of this system. But, de- 

tection must also be efficient and scaleable. If the negative selection and scan algorithms 

are not efficient, their execution times become too long to be practical or unobtrusive to 

the user. Additionally, if execution times increase radically with the addition of new (self) 

software, or the addition of new antibodies through vaccination, then the scaleability of 

the system limits its long term use. This section examines the effects of the number of 

antibodies, antibody length, detection threshold, and the size of the file system on the 

efficiency, effectiveness, and scaleability of the detector/antibody agents. These areas are 

explored through the antibody diversity, negative selection time, scan time, matching func- 

tion probability density, and the system error rate measures of performance (Section 5.1.3). 

5.2.1 Antibody Diversity. The purpose of this artificial immune system is to 

search through the set of finite length strings, X, in order to find elements of non-self 

(Section 3.2). By definition, because X = S U N and S D N = 0, those strings that are 

not part of self, S, are elements of non-self, N. 

The process of negative selection is a search through X given an input self set S. 

In this prototype, candidate solutions to this search are generated pseudo-randomly at 

antibody creation. The search space is large and exact areas of self and non-self are 

unknown. Therefore, the goal is to generate a diverse set of antibodies in order to explore 

as large an area of the space as possible. 

As a measure of diversity, Euclidean distance is used. Therefore, this test requires 

generating 0(N2) distance measures.  For this test, twenty antibodies, 4 bytes long are 
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generated. With this many antibodies, 400 distances are generated. For N much greater 

than this, the test quickly becomes unwieldy. The calculated distances are normalized 

based on the maximum possible distance, Dmax. 

X€{0...255}' 

1 = 4 

A,BeN 

Wl, VB DA<B = V(Ai - ßi)2 + (A2 - B2y + (A3 - B3)* + {A4 - Btf 
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For the pseudo-randomly generated set, the average normalized distance between an- 

tibodies was 0.38 with a standard deviation of 0.12 (Figure 49). For comparison, Figure 50 

is the normalized distance distribution for twenty evenly spaced antibody strings. This set 

of antibodies produces an average distance of 0.37 with a standard deviation of 0.24. The 

sawtooth variations in the "exponentially" decreasing trend are due to integer rounding of 

the byte values. 
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Figure 49.     Antibody diversity for randomly generated detector strings. 

Both figures give insight into the diversity of the antibody population, whether ran- 

domly created or generated by deterministic means. The random strings are slightly farther 

apart from each other on average, but the deterministic antibodies have a wider spread. 

This indicates that the deterministic antibodies cover a more diverse set of the search 

space, whereas the pseudo-randomly generated strings are clustered together with a few 
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Figure 50.     Antibody diversity for evenly spread generated detector strings. 

outlying samples. The figures also depict this trend. The 1% difference in the average 

distances is equivalent to a distance difference of 5.1 in this space. This does not appear 

to be very significant, but for larger antibody lengths, and therefore larger search spaces, 

the 1% difference will become more statistically significant. 

There is no way to know where in the search space non-self strings are found. They 

may be evenly dispersed, or found in clusters. For this system, random string creation 

probably performs as well as any other method. This is a byproduct of the No Free Lunch 

theorem (WM97). This theorem states that a stochastic search technique may perform 

well on a specific problem instantiation, but this is no guarantee that this same method 

will perform well on all instantiations of this problem. In essence, there is no one search 

technique for all problems that can perform better on average than a random search. The 

only way to improve the search is to bring in domain knowledge. Because negative selection 

is used, self must be predefined as an input to the algorithm. If this self were categorized, 

then the generation of non-self scan strings could be better directed to non-self areas of 

the search space. 

5.2.2 Negative Selection Time. The negative selection algorithm represents an 

investment that the system must make in order to remove the possibility of false positive 

errors (Section 3.2). The current algorithm sequentially checks each antibody against all 

bytes in the known self space.   This requires adding.each byte from self to the sliding 
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window and then comparing each antibody bit by bit. Negative selection is performed 

after each antibody string is randomly generated. If a match on self occurs, the antibody is 

regenerated and re-tested from the beginning of self. Theoretically, the negative selection 

time should grow linearly with respect to the number of antibodies, the length of each 

antibody, and the size of known self. This is because each byte in each antibody must be 

checked against every self byte. 

Number of antibodies — N 

Antibody length (bytes) — L 

Size of self (bytes) = S 

Sliding window shuffle — O(L) 

Bit compare = 0(8L) 

Negative selection = 0(N(S(L + 81,))) 

= O(NSL) 

The experimental results accurately follow the expected theory as the time tends to 

double as the number of antibodies are doubled (Figure 51). These tests were accomplished 

using IK of randomly generated self bytes. The results also depict larger variations in the 

negative selection time occurring with the smaller antibody sets. With the larger antibody 

sets, the effect of an additional scan on the total time is minimal. However, with only 

two antibodies, the occurrence of a single self match results in a negative selection time 

that is half again the length of a no-match scan. The variations in the average negative 

selection times, and therefore the expected linear growth rate, are due to the occurrence of 

self matches along with the cost of regenerating and re-censoring the replacement strings. 

Figure 52 depicts the effects of antibody length on the negative selection time. At 

lengths greater than 2 bytes, the negative selection time grows, although this growth is 

almost imperceptible. The change in length also induces very little variance in the negative 

selection time. However, a 2 byte string produces very dramatic increases in the censoring 

time with accompanying wide variance between runs. This is widely divergent from the 

theory. The observed 25 fold increase in the negative selection time is due to the increasing 
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Negative Selection Time vs. Number of Antibodies 
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Figure 51.     Negative selection time versus the number of antibodies per detector. 

generality of a 2 byte string; an increase in detector length produces an antibody that is 

increasingly tuned to a more specific virus. Somewhere between 2 and 4 bytes there is a 

sensitivity point, before which a very large number of matches on self occurs. The result 

is a much larger negative selection time in order to find the required number of 2 byte 

combinations that do not match self. The 4 byte antibody falls at the beginning of this 

trend. It has a negative selection time that is slightly greater than the 8 byte case, which 

is also divergent from the expected theory. 
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Figure 52.     Negative selection time versus antibody length. 

The previous tests utilized IK of self bytes in order to censor the antibodies. Fig- 

ure 53 shows the effect of the length of self on the negative selection time. The linear 

increase validates the theoretical results and the data also shows very little variation in the 
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experimental times, which results in imperceptible error baxs in the figure. The standard 

deviations are 4% or less of the average value. The system produces 16, 8 byte antibodies 

against 1MB of known self in approximately 10 minutes. Using the more general, 2 byte 

antibodies could cost over 25 times that on average. 
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Figure 53.     Negative selection time versus the size of self. 

The generation of correctly censored antibodies produces the core components for 

virus detection by an artificial immune system. File systems are large and growing. For 

example, an 8GB hard drive is now considered on the small side for commercially produced 

PCs. The current performance of this system would produce 128, 4 byte antibodies against 

8GB of self in 1.45 years! 

Negative Selection Time = fjffiffi • 1X
\GB

B
 ' 8GB = 45' 784> 00° sec 

= 1.45 years 

Clearly, this is too long to be practical and any reduction in antibody length or 

detection threshold would only increase this time. Algorithmic and implementation im- 

provements are required to reduce the negative selection time to a usable duration. 

5.2.3 Scan Time. The scan operation represents the heart of an anti-virus system. 

Ideally, this algorithm should run as quickly as possible in order to be unobtrusive to the 

user. Although even current systems often fall short of this goal. 
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Theoretically, the scan time of this system is directly proportional to the amount 

of data being scanned, the number of antibodies, and the antibody length. The scanning 

algorithm must read in each byte of the file system, add it to the sliding window, and then 

compare the window against the antibody string bit-by-bit. 

Number of antibodies = N 

Antibody length(bytes) = L 

Size of file system(bytes) = X 

Sliding window shuffle = 0(L) 

Bit compare = 0(8L) 

Negative selection = 0(X(L + N(8L))) 

= 0{NXL) 

Experimental results hold true to theoretical expectations. The number of antibod- 

ies in a detector directly affects the scan time (Figure 54). As the number of antibodies 

is doubled, the scan time is also doubled. Compared to the negative selection algorithm 

(Section 5.2.2, Figure 51), scanning produces negligible variations in execution time. Dur- 

ing scanning, if a match occurs, the offending file and its bound antibody are added to a 

list. This requires no regeneration or re-scanning as in negative selection. Therefore, scan 

times are almost constant between runs. 
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Figure 54.     Scan time versus the number of antibodies per detector. 
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Antibody length also affects scan time linearly, however there is a very small multi- 

plier reducing the effect (Figure 55). The time only increases about 3% with the addition 

of an extra byte to the string. This results in a 6% jump when doubling the antibody 

length. In general, these results give a few specific, long, antibodies an advantage over 

many short strings. Longer strings can be used with only small performance ramifications. 

The long antibodies also result in relatively short negative selection times due to their 

specificity (Section 5.2.2, Figure 52). The trade off is in the ability to effectively search 

the larger space created by utilizing specialized detectors. 
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Figure 55.     Scan time versus antibody length. 

The experimental results also parallel theory with respect to file system growth (Fig- 

ure 56). Increasing the file system size 10 fold also increases the scan time by a factor of 

10. The 2MB file system is scanned in 19^ minutes. Extrapolating out, an 8GB file system 

with 128, 4 byte antibodies would take 1.05 years to scan. 

Scan Time = fffig6^/ ■ 1X
\%B

B
 ■ %GB = 33> 146>400 sec 

= 1.05 years 

Scanning is faster than negative selection because files only need to be opened once 

and compared against all antibodies (Section 5.2.2). The current negative selection algo- 

rithm requires opening every file in the system once for each antibody. Therefore, the I/O 

system overhead is incurred multiple times unnecessarily. This observation gives insight 

into possible algorithmic improvements for negative selection. As with negative selection, 
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Figure 56.     Scan time versus file system size. 

the scan time is too long to be of practical use. Algorithmic and implementation improve- 

ments are needed to make the system usable. 

5.2.4 Matching Function Value Density. The matching function value probability 

density plot produces a pictorial representation of the antibody specificity. It also allows 

the system designer to match the antibody, matching function pair with an appropriate 

detection threshold. 

Figure 57 depicts the probability density histograms for 8 byte antibodies tested 

against various sizes of self. Each of these graphs are identical and also match the 8 byte 

antibody graph in Figure 58. From these experiments, it is obvious that file size has no 

affect on antibody specificity. Even the very small variations are not greatly effected by 

an increasing number of samples. The 8 byte antibody, combined with the Rogers and 

Tanimoto matching function results in a stable value probability density. 

While the size of the scan space has no effect on antibody specificity, string length 

has a significant effect (Figure 58). As the antibody length increases, the probability distri- 

bution is compressed towards the 30%-40% band. This reflects the increasing specificity of 

the longer antibody strings. Also, variance in band probabilities decreases with antibody 

length, although the variability in all the probability values is very low. The 4 byte anti- 

body experimental results compare almost exactly with those gained in the matching rule 

selection tests (Section 3.3, Figure 25). This similarity includes the operational problem 

134 



www.manaraa.com

1K File System Matching Function Probability 

Density 

0.7 

0.6 
£0.5 
S  0.4 

|  03 
a- 02 

0.1 

0 
02       0.3      0.4      0.5       0.6      0.7      0.8      0.9 

1K File System Matching Function Value 

10K File System Matching Function Probability 

Density 

-0.4- 

S 03- 
£  0.2 ■ 

0.1 ■ 

Hill 
R^'-' 
jLy...- 

F7"7!     • L. '.:■[•'•. .{  , 
i*V.":[:,..     ■ '■ ' I 

0.1       0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.9        1 
10K File System Matching Function Value 

100K File System Matching Function Probability Density 

0.7 

0.6 

0.5 

| 0.4 

| 0.3 
£  0.2 

0.1 

0 
0.2      0.3      0.4      0.5       0.6      07      0.8      0.9 

100K File System Matching Function Value 

1M File System Matching Function Probability Density 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0.1       02      0.3      0.4      0.5      0.6      0.7      0.8      0.9 

10OK File System Matching Function Value 

Figure 57.     Matching function probability density versus file system size. 

of the wide gap between a perfect match and the first function values appearing between 

60%-70%. The gap problem is somewhat alleviated by using 2 byte antibodies (Figure 59). 

The 2 byte antibody probability more closely matches the ideal case (Section 3.3, Fig- 

ure 23). This indicates that very general scan strings may provide better detection results, 

but these small strings induce other problems. 

The antibody length should be selected based on the desired specificity of the anti- 

body search strings. While 2 byte strings more closely reflect the ideal case, their extreme 

generality results in a high negative selection cost. Additionally, the antibody strings are 

(most often) used to find viral machine code instructions. On Intel hardware1, 2 bytes only 

code for a few simple instructions, such as a stack pop to a register (Table 26) (TS91). 

Increasing the string length to 4 bytes allows the antibody to cover almost the entire ba- 

sic instruction set, except for direct memory addressing instructions. Therefore, utilizing 

antibodies of length 4 or greater is more appropriate considering the target platform. 

1 DOS-based systems operating on Intel microprocessors are the host to the greatest number of viruses 
(Section 2.1.1). 
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Figure 58.     Matching function probability density versus antibody length. 

Table 26.     Intel 8088 processor instruction lengths (TS91). 

Type Name Mnemonic Length 

Data Transfer Pop to Register POP 1 
Push to Register PUSH 1 

Arithmetic Increment Register INC 1 
Compare Immediate CMP 2 

Control Jump on Greater JG 2 
Loop LOOP 2 

5.2.5 Error Rate. The system's error rates reflect its ability to detect self and 

non-self appropriately (Section 3.2). The false positive rate should always be zero. This 

is ensured in advance by the negative selection algorithm. By initially censoring strings 

against self, no future self matches should occur. The false negative rate should also 

ideally be zero. Any percentage higher than this indicates the system's relative inability 

to detect the presence of non-self. This rate can fluctuate dramatically because of the 

stochastic nature of the problem. The antibody strings are randomly generated, as are the 

appearance of viral infections.  So, the system parameters, such as antibody length, the 
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Figure 59.     Matching function probability density for two byte antibodies. 

number of antibodies, and the detection threshold must all be tuned in order to minimize 

the false negative rate. 

Increasing the number of antibodies linearly decreases the average false negative rate 

(Figure 60). This test utilizes 4 byte antibodies and a 0.7 detection threshold against IK of 

randomly generated non-self bytes. The error bars indicate the maximum and minimum 

values to understand the complete range of values. Due to the probabilistic nature of 

the problem, even 64 antibodies can fail to find non-self the same as a single antibody. 

Conversely, the best run of 64 or greater number of antibody strings found all the non- 

self files. In order to generate a consistently low error rate, 128 or more antibodies are 

required per detector. However, this results in higher negative selection and scan times. 

A trade off between speed and coverage must be made. This design trade is the idea 

behind fast scanning Complement agents (Section 4.1.1). These agents were not included 

in the prototype implementation (Section 4.1.2), but their use could be explored in future 

versions. 

As previously shown, the length of the antibody affects its specificity as a detector 

(Section 5.2.4). The error rate for long detectors should be greater than the smaller, more 

general strings. This is a by product of a long detector's need to search an exponentially 

larger space in order to find a match. This trend is evident in Figure 61. At lengths 

greater than 4 bytes, the antibodies have a complete inability to find IK of random non- 

self bytes. The extremely general, 2 byte strings are able to find all non-self files with no 
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Error Rate vs. Number of Antibodies 
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Figure 60.     Error rates versus the number of antibodies per detector. 

variance. In the middle between these two extremes is the 4 byte antibody. On average, 

these perform better than the longer strings, but they also only detect non-self 20% of the 

time. The variance seen with this length is indicative of its position between too general 

and too specific. The random generation of 4 byte antibodies can place them on either 

side of a present or future non-self boundary. For these tests, a 0.7 detection threshold 

is used. The error rate graph (Figure 61) is a reflection of the probability of a matching 

value occurring about this threshold (Figures 58 and 59). Therefore, selecting the antibody 

length determines its specificity, but this must be matched with an appropriate activation 

threshold in order to obtain the desired error rate. In essence, reducing the detection 

threshold creates a more general detector, no matter what its length. 
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Figure 61.     Error rates versus antibody length. 
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Figure 62 depicts the affect of the detection threshold on the false negative rate. For 

this test, each run consists of a detector with 32, 8 byte antibodies. The 100% false negative 

rate at a 0.7 threshold matches the same result in Figure 61. These results are also in line 

with the 8 byte matching function probability density (Figure 58). At threshold values 

less than 0.7, the antibody set becomes an increasingly effective non-self discriminator. An 

activation threshold of 0.55 results in a 100% effective detector with no variance. 
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Figure 62.     Error rates versus detection threshold. 

The final test examines the affects of the file system size on the error rate (Figure 63). 

The results indicate only a minor influence, with wide variations. This is not surprising 

as a larger set of non-self bytes simply gives the detector more chances to encounter a 

match. For these tests, detectors utilizing 16, 8 byte antibodies searched up to a 2MB 

file system containing up to 1MB of random non-self bytes. In practice, the likelihood of 

1MB of non-self appearing on an individual system is all but impossible. Because most 

viruses are smaller than 5KB (Section 2.1.4, Table 2), the accumulation of IM of non-self 

bytes would require a significant number of simultaneous infections. This is an event this 

is so remote that its occurrence is impossible without sabotage. Therefore, this example 

is mostly pedagogical. In a practical environment (5K-10K bytes of non-self) the size of 

non-self has no measurable effect on the false negative error rate, except to keep it high. 

These results indicate that each detector should field as many generic antibodies as 

possible in order to minimize the false negative rate. However, the use of highly generic, 

as well as large numbers of antibodies contribute to an increased negative selection time. 
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Error Rate vs. File System Size 
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Figure 63.     Error rates versus file system size. 

But, negative selection is necessary to force the false positive rate to 0%. An engineering 

trade-off must be made between negative selection time and system effectiveness. Once the 

desired antibody length is selected, the detection threshold must be tuned to the antibody 

matching function probability density in order to create a system that actually detects 

non-self with the desired frequency. 

5.2.6 Real World Effectiveness. The previous tests have shown that the system 

operates as designed and is able to successfully detect the existence of non-self within a set 

of self strings. However, these results were gained by testing the system against randomly 

generated self and non-self bytes. In order to be truly effective, the system must be able 

to detect actual malicious code among a larger set of known self applications. 

The first test against other than random bytes uses a polar input set. For this test, 

self is made up of all ones, while non-self consists of all zeros (Section 5.1.4, Table 22). 

Interestingly, the randomly generated 8 byte antibodies have a harder time finding this 

consistent non-self set (Figure 64). Full detection only occurs with an activation threshold 

of 0.4 or less. The 100% error rate difference between 0.45 and 0.4 is indicative of the 

consistent, polar nature of the self and non-self sets. Once one detector is able to bind 

with a string of zeros, it is able to bind with all of non-self. This results in a 0% false 

negative rate once the detection threshold is crossed.   This test does not provide much 

140 



www.manaraa.com

useful information in itself other than the dramatic effect a proper detection threshold 

selection can make. But, by comparing with the similar data obtained using random non- 

self bytes (Figure 62) and interesting difference emerges. This test shows 100% detection 

at a threshold of 0.4, while with random strings, 100% detection occurs at a 0.55 threshold. 

Previous data indicated that the detection threshold should be tuned based on the antibody 

length. Additionally, this test indicates that tuning should also be done based on the 

contents of self and non-self. This data also shows that antibody generation could be 

improved based on knowledge of existing self and non-self bytes. An a priori examination 

of non-self would have revealed that a single antibody pattern consisting of all zeros could 

have matched, with the highest affinity possible, all non-self in this system. Because of the 

influence of search space contents on system effectiveness, tests against actual viruses are 

conducted. 
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Figure 64.     Detector's ability to detect non-self. 

The real world virus test utilizes test input five (Section 5.1.4, Table 22). This test 

suite consists of 196KB of application programs and 136 bytes in the two EICAR "viruses" 

(Section 5.1.4). This test also reveals the system's ability to detect, as of yet, unknown 

viruses. For example, Norton AntiVirus (NAV) can detect the EICAR68 test string 100% 

of the time, while it has a 100% false negative rate for the newly created EICARPAU test 

string. Figure 65 presents the error rates for various detection thresholds. The detection 

rates represent the total rate for multiple runs of variable number of antibodies per detector. 
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A roughly 10% false negative error rate is the best result when using a detection threshold 

of 0.6 or less. 
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Figure 65.     Detection rate for known and unknown viruses. 

In general, the system was able to detect the new virus strain at a rate only slightly 

less than that of the known virus. Additionally, the system found both non-self files at a 

rate equal to, or slightly less than, the least detected strain. In these cases, the addition of 

affinity maturation (Section 2.2.3.2) to improve the antibody false negative rate could be 

highly useful. An affinity maturation capability could either evolve antibodies to recognize 

one virus very well, or evolve a general detector that binds to both strings equally. 

A tuned detection threshold results in an 89% detection rate for both strings. NAV 

produces a constant 50% false negative rate. This system out performs NAV for detection 

thresholds of 0.6 or below and indicates that the theoretical basis for a CVIS is sound. 

The original problem statement (Chapter I) emphasizes the inability of current anti-virus 

software to adapt and recognize new viruses. This system is able to detect the new strain 

with approximately a 9% false negative rate. The trade off with the immune system 

methodology is the probability of detection, while current systems utilize deterministic 

scanning to give 100% detection of known viruses. However, through careful tuning, a 0% 

false negative rate can be obtained (Figure 62). Beyond this, additional coverage can be 
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gained by utilizing distributed detectors that share successful antibodies.   An improved 

error rate can be gained in this manner through a multiagent collective self defense. 

5.3   Multiagent Operation 

5.3.1 Antibody Candidate Pool Size. The experiments on the system negative 

selection time suggest that a performance increase can be gained by over generating the 

number of required antibodies and then censoring this large pool down to the required 

number. However, such an algorithm requires understanding what size the initial pool 

of uncensored scan strings should be. Dr. Forrest's research on the r-contiguous bits 

algorithm validates theoretical results that the required number of initial strings, NRQ, 

grows with the the probability of a match, the number of final strings required, and the 

size of self (FAPC94). The Rogers and Tanimoto similarity rule produces similar results. 

This experiment varies the detection threshold and the number of final antibodies re- 

quired against the Timid virus infected application suite, input 6 (Section 5.1.4, Table 22). 

The results indicate that the size of Nj^ increases linearly with the number of required 

antibodies and exponentially with a decrease in the detection threshold (Figure 66). The 

higher detection thresholds all require the approximately same number of initial candi- 

dates, with a break in this trend occurring at a threshold of 0.65. The required number of 

candidates increases dramatically thereafter. This phenomenon is roughly the inverse of 

the results seen in Figures 62 and 65. As the detection threshold decreases, the antibodies 

become more general. This results in an increased number of matches on self during cen- 

soring, and improved non-self detection during employment. The small false negative rates 

that are required for an effective system require the up front investment in a large antibody 

candidate pool. The near 100% detection rate seen at a threshold of 0.6 requires about 4 

times the number of immature strings as naive ones. In order to obtain a 0% false negative 

rate at a 0.55 threshold, a 23 to 1 ratio is required. This is a reflection of the increased 

negative selection time vs. coverage tradeoff seen in earlier experiments (Section 5.2.2). 

Once again, the performance of the system requires tradeoffs in coverage, speed, 

and memory. The selection of the system parameters, such as number of antibodies per 

detector and the detection threshold, can have a dramatic affect on the system efficiency 
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Figure 66.     Effects of matching threshold on negative selection candidate pool size. 

and effectiveness. At a detection threshold of 0.55, generating 128 antibodies requires an 

initial pool of 3020 candidates on average. Previous results indicate that at least 64, 4 byte 

antibodies, at a detection threshold of 0.60 or less is required in order to reduce the false 

negative error rate to within effective limits. This will require the generation of several 

hundred to several thousand candidate antibodies for censor. 

The UNM research on the use of the r-contiguous bits measure indicates that gen- 

erating 46 antibodies against 512 bytes of self requires a repertoire of 34,915 candidates 

on average and results in a 15.7% false negative rate (FAPC94). This agent-based CVIS 

is able to create 64 antibodies using an average initial repertoire of 1338 candidates and 

a threshold of 0.55. This results in an average false negative rate of 0% (Figure 62). The 

system is able to out perform initial r-contiguous bits prototypes and is also more efficient 

in candidate pool size. 

5.3.2 Communications Performance. The Java Shared Data Toolkit (JSDT) is 

the communication library chosen for this prototype (Section 4.2). JSDT was selected 

based on its ability to best support the multiagent environment and the logical system 

hierarchy (Section 3.4.3). The JSDT provides a multithreaded communications backbone 

with client registry, naming, and lookup services. All messages in JSDT are passed as Data 

objects. These objects encapsulate the actual data sent by an agent along with other fields, 
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such as the sender's name and the data's priority level. This all represents communications 

overhead. To understand the effects of this overhead, experiments are-performed to gain 

insight into the role of JSDT communications on the system effectiveness, efficiency, and 

scaleability. 

In order to communicate, all agents must register themselves with a session. The 

JSDT Registry holds pointers to the sessions and agents subscribed. The Registry may 

reside on either a local or remote host. Agents joining the system incur an initial communi- 

cations cost registering with the appropriate session (Section 4.2.8, Figure 46). The results 

of agents subscribing to local and remote Registries can be seen in Figure 67. The slightly 

higher average cost of a local registration is counter intuitive, as is the wide variation in 

connect times. All observed registration times were either 0msec or 10msec for both the 

local and remote connections. The local test had one 10msec run more than the remote 

experiments, which leads to the difference in the average values. A larger sample set would 

probably generate equal average connect times for both cases. But, the area of interest is 

the polar nature of the connect times. All JSDT communication calls are asynchronously 

carried out by spawning new threads. It is hypothesized that the polar registration times 

are the result of chance in the system's entry point into the thread execution queue. The 

longer, 10msec times are the result of waiting for the round robin queue to come around 

and schedule the registration thread. 

Q 

Agent Registration Time 

8 - 
7 - 

•u   6 - 

i : 
E   3 - 
^   2 

1 - 
n 

^MHÜ ^HHI 
JSDT                              JSDT Local 

Figure 67.     Agent registration communication time. 
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After registration, agents use the registry in order to lookup peers for communica- 

tions. This results in a remote agent connection cost. Hirano, Yasu, and Igarashi performed 

a comparative study of several Java distributed object communications methodologies in- 

cluding RMI, HORB CORBA, Voyager agents, and sockets (HYI98). Tests are performed 

using JSDT and related to the data presented in (HYI98). JSDT performs remote agent 

connection by requesting the list of agents registered with a session. What is returned 

is a list of agent names. These strings must then be parsed for the correct conversation 

partner. This method of operation results in agent location transparency along with the 

flexibility of operating on ASCII strings. However, the system incurs a large cost acquiring 

and sending the array of string names (Figure 68). The cost of a local name lookup is 

0 due to the high speed of memory copy versus the low speed network connection to a 

remote host. In general, JSDT connects faster to a remote agent than the Voyager ADK, 

but half again slower than RMI, or HORB CORBA. DCOM was not tested due to its 

inability to connect to existing remote objects (HYI98). After obtaining a reference to a 

remote agent, data must be sent to it for processing. This is commonly accomplished via 

a remote method call. 
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Figure 68.     Agent lookup and connection communication time. 

Remote method calls are the heart of distributed object architectures such as CORBA, 

RMI, and DCOM. Socket communications, on the other hand, utilizes data streams for 

message passing.  Somewhere in the middle is the Java Shared Data Toolkit. JSDT uti- 
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lizes socket communications to transport Data objects to the dataReceived method of the 

message recipient. 

In order to compare these methodologies, remote method calls are simulated using 

JSDT and sockets by sending the method arguments, operating on them at the receive 

end, and then sending the return value as a reply message (HYI98). The experiment uses 

three integer arguments and a single integer result. 

The performance of JSDT compared with the results from (HYI98) can be seen in 

Figure 69. The JSDT simulated method calls perform an order of magnitude worse than 

Voyager agents, which themselves cost almost five times more than a C socket implementa- 

tion. The JSDT sendToClient call addresses a recipient by name. Therefore, to complete 

the actual delivery, JSDT must perform a lookup of the target name within the list of the 

channel subscribers in order to get a pointer to the recipient agent. In essence embedded 

within a JSDT send operation is also a Registry naming lookup. This results in an in- 

creased send time. The reply send operates similarly. Additionally, all messages are sent 

as Data objects, which are larger and contain many fields above and beyond the simple 

integer primitive types. The result is an extremely lengthy send time. However, where 

JSDT fails miserably in speed, it excels in functionality. 

In JSDT, send operations are inherently multithreaded and asynchronous. This is 

not the case with all the other methodologies. All other systems must busy wait for the 

remote method return value before proceeding. Additionally, all the architectures require 

obtaining a pointer or handle to the receiving agent before executing this remote method. 

Because of JSDT's send by name convention, references do not need to be obtained if 

agent names are known a priori. Furthermore, a multicast send requires no recipient 

references at all. All channel subscribers automatically receive the data. Finally, due 

to the asynchronous operation, agents can send their data and then perform additional 

processing. So, even though the send itself takes longer than other methodologies, it can be 

performed by a separate thread in the background, resulting in lower agent communication 

to computation time ratio. But, the multithreaded, asynchronous, operation represents 

a task that the processor must run concurrently. This can possibly reduce the system 

scaleability. 
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Figure 69.     Remote method call communication time. 

To understand the effects of JSDT delivered agent messaging, tests are performed 

between a Controller agent and a varying number of Monitors conducting multiple si- 

multaneous cStatus conversations. For this test, each Monitor sequentially generates 500 

conversation threads. The Controller is hosted on ABC-A1, a dual CPU machine (Sec- 

tion 5.1.6, Table 24). The data indicates that increasing the number of Monitors initiating 

a cStatus conversation with a single Controller results in no significant difference in the 

conversation response times (Figure 70). The Controller was able to easily keep up with 

the increased workload with this number of Monitors (Figure 71). The CPU loading in- 

creases linearly with the number of Monitor agents and even with 8 initiators, the dual 

CPU's are only at about 20% loading on average. At this growth rate, it would take ap- 

proximately 37 Monitor agents in order to increase both CPU utilizations to 100%. Only 

at this point would the average response times increase and overall system performance 

decrease. This agent-based architecture utilizing JSDT for communication exhibits excel- 

lent scaleability. A single Controller is projected to be able to support over 30 Monitors 

engaged in continuous conversations; a scenario which is not entirely likely. An anti-virus 

system is largely event driven. The chain of communications occurs only on a somewhat 

rare event, such as a virus detection or a system vaccination. Therefore, large numbers of 

agents generating multiple simultaneous conversations is an event that could only occur 

during an epidemic in a large system deployment. An unlikely occurrence, but even this 
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initial prototype appears capable of supporting a large scale deployment under extreme 

conditions. 

Average Conversation Execution Time 

700 

600 

500 

§ 400 
E. 
"c  300 
E 
•"  200 

100 

0 

fF3S32 

m 
Number of Initiators 

Figure 70.     Conversation response time during multiple simultaneous conversations. 
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Figure 71.     Processor loading during multiple simultaneous conversations. 

The JSDT environment offers a capable, effective, and scaleable communications 

backbone for this agent-based CVIS prototype. JSDT natively provides a registry, nam- 

ing services, and asynchronous communications all utilizing the power of Java threads. 

However, JSDT is lacking in performance. The overhead required to provide the system 

flexibility and ease of use results in communication times that are significantly longer than 
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other methodologies.   For this reason, other communication packages, such as CORBA 

could be investigated. 

5.4    Summary 

This chapter develops a thorough system test plan and discusses the results and 

analysis gained though system testing. The agent-based CVIS proves to be effective at 

detecting non-self within varying probabilistic error rates. The error rates are tunable 

through the proper selection of the number of fielded antibodies, the antibody length, 

and the detection threshold. The system is able to detect the presence of known and 

unknown malicious code, an advantage over current anti-virus solutions. Unfortunately, 

the performance limitations of Java affect the system efficiency and its usability in a real- 

world environment. However, the overall architecture did prove to be highly scaleable and 

even in its current implementation, would support an enterprise level deployment. These 

results and analysis lead to several conclusions across many of the integration domains. 

The conclusions are elaborated in the next chapter. 
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VI.   Conclusions and Recommendations 

The overall goal is to create an agent-based computer virus immune system. This was 

accomplished successfully though meeting the objectives. Effective system and local models 

of immune system operation were constructed that realize improvements over current anti- 

virus solutions. Based on these models, the multi-layered implementation provides an 

effective solution for the detection, identification, and elimination of computer viruses. 

The prototype was used to gain insight into the efficiency, effectiveness, and scaleability of 

an agent-based artificial immune system. The successful use of agents and the integration of 

pattern recognition principles are valuable contributions to the immunological computation 

community. 

This research was conducted by integrating many different domains including im- 

munology, immunological computation, malicious code, multiagent systems, and parallel 

& distributed computation. Because of the diverse amalgamation of ideas, conclusions are 

discussed from a variety of perspectives. These conclusions are based on the analysis of 

the design implementation. 

6.1    Conclusions 

System Models The system and local models for this CVIS are created based on ideas 

from biology, the self-adaptive CVIS (LMV99), the antibody lifecycle (HF99), and 

parallel computation. The separation of tasks into a logical hierarchy supports the 

reduction of the computational burden by allocating responsibilities to dedicated 

agents operating at the appropriate level. By integrating this structure with the pre- 

vention focus of the computer health system (C099), a system-wide "computational 

health management" infrastructure is created that emphasizes preventative measures 

through information sharing. This infrastructure allows for the early identification 

and elimination of wide spread attacks, a feature missing from current AV capabili- 

ties. It also provides a forum for a collective self defense by enabling the sharing of 

successful antibodies among individual detectors in the "population." This diversity 

that is used to the advantage of the entire system is the result of the local model. 
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Each detector on each node within the system independently generates and manages 

its own antibody set. The computational burden on individual nodes is reduced 

by limiting the local number of antibodies. This distributes the cost of generation 

and negative selection across the system. These tasks can also be performed in 

parallel. Even though the detection capabilities at the local node are limited to the 

antibodies on hand, the full power of all the system scan strings can be utilized 

though information sharing via vaccinations. Additionally, each node is continually 

searching the non-self space through the "programmed cell death" within the local 

detector string lifecycle. This realizes the greatest advantage of this system over 

current methodologies, which is the ability to recognize as of yet unknown viral 

infections. The power gained through the partitioning of tasks and the sharing of 

information is accomplished through distributed, collaborating agents. 

Agents The biological immune system is made up of many individual entities, each with 

their own "goals" and "services." Because of this, mapping the capabilities of these 

entities to software agents is an intuitive task. Additionally, the biological immune 

system components communicate through chemical signals. This elegantly maps to 

message passing in a distributed artificial immune system. For these reasons, the 

agent paradigm represents an excellent software engineering approach to AIS design. 

The idea of agents does not represent a revolution in software design, but instead 

offers an extension to object-oriented software engineering that is useful for under- 

standing and communicating about the components of complex, interacting systems. 

By discussing software objects in anthropomorphic terms, individuals are better able 

to visualize the system operation as related to everyday experience, such as one-to- 

one communication in a community of peers, using an expressive language. This 

is more intuitive than a client-server network utilizing several communications pro- 

tocols. The agent abstraction provides an outstanding way to visualize and design 

the CVIS components based on their biological counterparts. However, below the 

top-level system view, the design and construction follow standard object-oriented 

approaches. 
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MaSE provides a superb software engineering approach that captures the nuances 

of agent-based design. However, the current object-oriented design tools do not 

interface well with the MaSE process. This results in a conceptual leap from the 

agent paradigm to object-oriented design after agents and their conversations are 

formulated. The standard MaSE methodology utilizes state transition diagrams in 

order to connect message receipt events to internal agent actions. However, STDs do 

not capture the temporal relationships in the conversation message passing protocols. 

The messages must arrive in the proper sequence for the conversation transaction to 

occur. Therefore, the MaSE methodology needs the addition of message sequence 

charts to fully specify conversations. Although they are not explicitly excluded, they 

are not included as part of the process and should be. Any further development 

on CASE tools based on the MaSE methodology (i.e. AgentTool) should include 

an environment for creating message sequence charts in order to properly define 

conversation protocols. 

Antibodies The Detector agents each carry a battery of several antibody scan strings. In 

this prototype, these are generated pseudo-randomly. This provides a quick produc- 

tion method and because the exact locations of non-self within the search space are 

unknown, probably provides as good a method as any given all the possible non-self 

instantiations. 

Testing shows that there exists an engineering trade-off between the specificity and 

generality of an antibody. Short strings are more general because they reduce the 

dimensionality of the self/non-self space and hence cover a larger area. A 4 byte 

antibody is shown to provide the coverage of a general detector string without the 

high negative selection cost of being too general. However, the cost of general de- 

tectors in terms of precision is unknown. Current AV solutions utilize 16 byte scan 

strings in order to help eliminate the threat of false positives. The CVIS accom- 

plishes this through negative selection. However, short antibody lengths may not be 

able to adequately distinguish between self and non-self in cases where their differ- 

ences are fine grained. The result is undetectable holes in the detector's ability to 

recognize non-self. This discussion alludes to a characterization of the self/non-self 
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space, which has not been accomplished for this problem domain. Future activities in 

this area could lead to the improved generation of antibodies through enhancing the 

random search by steering the generation algorithm towards known non-self areas of 

the search space. 

Management Advantage Current anti-virus solutions are monolithic and provide little 

or no system wide management capabilities. Each desktop locally runs the complete 

AV package. All decisions for what and how to scan are left to the user. Even the 

addition of viral updates, vital to the continued effectiveness of the system, are often 

the task of the individual user to manually integrate. This prototype CVIS eliminates 

these problems and provides a framework for system metric reporting. 

By using autonomous agents, this CVIS all but eliminates individual user interaction. 

Vaccinations and infection responses are controlled and directed by the agents at 

the network and system levels. Additionally, current system status is passed up 

the chain. This allows for automated metric collection, system status evaluation, 

and trend analysis. With the addition of appropriate logic, system-wide infection 

epidemics can be recognized and eliminated in real-time. 

For the Air Force (and by extension the DoD) self is known and predefined by pol- 

icy. Only approved applications are allowed on government information systems. 

From initialization on, the CVIS will find the presence of non-self (within a tunable 

probabilistic error rate). For the purposes of Air Force system custodians, this al- 

lows them to monitor for the presence of malicious code as well as non-approved 

application software. 

Government agencies also have a reporting requirement for viral infections. Incident 

reports must be compiled and passed up the chain. With this architecture, virus 

incidents are already reported up the hierarchy. Automated incident report genera- 

tion and statistics could be added to the metric generation duties of the Controller 

agents without much difficulty. This has the potential to save money and manpower 

that are currently being used to generate, report, and collate incident reports. Also 

available could be a real-time status display for infection incidents across the entire 

system. A live system status on malicious code incidents, similar to the network op- 
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erational status utilized by the GNOSC at DISA, could be generated and pictorially 

presented. 

By integrating the ideas of an AV system hierarchy (MVL98) with the manage- 

ment and oversight processes of the public health system (C099), this distributed 

agent-based CVIS provides a superior capability for system wide management and 

elimination of the virus threat over current solutions. 

Issues There are several issues that remain unaddressed by this system including security 

and a time varying notion of self. No security layer is implemented in this prototype. 

The distributed nature of the system leaves it wide open to spoofing attacks that 

can compromise system integrity. Encrypted channels and digitally signed messages 

are required in order to ensure trusted conversations. JSDT can easily support these 

additions but what is ultimately required is a quality control mechanism for critical 

system components. 

The system could be "trained" to generate an autoimmune reaction. By performing 

negative selection on non-self, all censored antibodies would react against self strings. 

These antibodies could then be passed on to other nodes using spoofed vaccination 

messages. The result would be false positive detections and the possible elimination 

of valid self applications. A trusted quality control mechanism is needed to oversee 

alarm generation and the dispensing of vaccinations. 

Another problem is the constantly changing notion of self. Programs are continually 

added and deleted from most desktops. With the addition of an application, all an- 

tibodies would need to be re-censored against the new self additions. The problem 

with this methodology is the assumption that the new software is not infected. Al- 

ternatively, the new program can be scanned. A positive detection could indicate the 

presence of an infection or, the simple recognition that this "self has not been en- 

countered before by the system, a false positive. This problem is currently accounted 

for by the antibody life-cycle (Section 3.4.4, Figure 29). Any match requires a cos- 

timulation signal (currently from the system administrator) in order for an action to 

be taken. Therefore, the decision on whether this is a false positive or not rests with 

the judgment of the system administrator. While this scenario is accounted for, the 
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solution does not provide an assurance of detection and elimination, features core to 

the system effectiveness. 

6.2   Implementation Changes to the Original Design 

The system design represents a complete architecture for a CVIS. However, during 

implementation, several changes to this design were made to improve system operation, 

reduce unnecessary prototype complexity, and reduce schedule risk. The changes affect 

one agent, several conversations, and the conversation methodology. 

The Complement agent is not present in the prototype implementation. The idea 

of a fast, less constrained scanning operation remains sound and is validated by exper- 

imental results (Section 5.2.3). However, issues in the areas of antibody coherency and 

coordination are raised between the Complement agents and their associated Detectors. 

The Complement agent offers probable improved system performance for scan operations. 

This is beyond the scope of the initial prototype, but could be included as part of future 

algorithmic improvements. The associated conversation to pass possible infections from a 

Complement agent to a Detector is also absent. 

The cCostimulation conversation was originally designed to be initiated within other 

conversations in the raise alarm communications chain. During implementation, this 

proved to be awkward and inconsistent with other conversation designs. Therefore, it 

was broken up into separate cGraduateToMemory and cDestroyDetectorString conversa- 

tions. These are now called by a Monitor agent in response to a positive, or negative, 

alarm costimulation. 

Finally, implementation problems with the JSDT invite model resulted in a design 

change to the agent communication methodology. The socket-based agentMOM requires 

the use of a hailing channel in order to invite other agents to join a conversation (Sec- 

tion 4.2.4.2, Figure 44). The proposed design calls for using JSDT's ability to invite 

other clients through event services. This results in a much cleaner design (Section 4.2.8, 

Figure 47). However, creating the infrastructure for channel invitations requires creating 

channel managers and handling channel events. Although conceptually more elegant, the 
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architecture was unrealizable due to unresolved problems. Therefore, the final implemen- 

tation utilizes the hailing channel methodology proposed by agentMOM. All agents join 

the hailing channel during registration with their appropriate session. 

In spite of these changes, the remaining components are implemented as designed. 

The system is able to fully achieve the capabilities outlined in the system and local models. 

The extensive work initially expended on the system design has ensured the creation of an 

effective agent-based CVIS. 

6.3   Future Research 

Improved Scanning and Negative Selection Speed The current system can produce 

naive antibodies in 1.45 years for an 8GB drive and scan that drive in 1.05 years. 

This prototype system efficiency needs to be improved in order to be operationally 

viable. 

Use of Compiled Languages C/C++ file access and scanning routines could be inte- 

grated into the current system through the use of the Java Native Interface (JNI). 

This functionality allows the calling of compiled C routines from a Java application. 

The system speed could be improved though very little effort via this route, while 

maintaining the current system architecture and communications functionality. 

Parallel Censoring The prototype algorithm generates and performs negative selection 

sequentially. The algorithm execution time can be greatly reduced by generating an 

excess number of antibodies and then censoring them all in parallel. During negative 

selection, those antibody strings matching self are removed from the candidate pop- 

ulation. After censoring, only naive strings remain. A sufficiently large number must 

be initially generated in order to ensure that enough remain after negative selection. 

This number of initial candidates must be estimated based on the antibody length, 

contents of self, detection threshold, and the number of remaining strings required 

after negative selection. 

Efficient String Matching Improved methods of string pattern matching could be in- 

tegrated to increase the performance of the matching algorithm. A common method 
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used in spell checking is to a priori construct a directed graph of the patterns. This is 

then used to process the input string against all patterns in a single pass by "walking" 

the graph (AC75). 

Improved Matching Function The Rogers and Tanimoto measure along with 4 byte 

antibodies results in a detection value density distribution that approximates, but 

is not quite the same as, the ideal case. The use of 2 byte antibodies even more 

closely resembles the ideal case. However these are so general that they induce an 

extremely high negative selection time. Future research could create a matching 

function that produces the desired distribution, but uses a larger number of bytes 

in the antibody string. An improved function could be evolved through the use of 

genetic programming. 

Antibody Creation The prototype uses a pseudo-random number generator to create 

antibody candidates. These are then censored at a very high rate to produce valid 

detection strings. Improved antibody generation schemes could reduce the censoring 

rate by directing the creation algorithm to known areas of the non-self space. This 

would improve the generation and negative selection efficiency. 

Affinity Maturation The current implementation of deploying randomly generated an- 

tibodies can result in multiple matches on the same antigen. Affinity maturation 

could be implemented to conserve resources by only retaining the antibody with the 

highest affinity. This could be extended to include hypermutation and clonal se- 

lection algorithms to create evolved copies of high affinity antibodies. This has the 

possibility of improving the system adaption process and also increasing the detection 

of related viral strains. 

Metrics One of the goals of the Controller agent is to produce metrics on system perfor- 

mance (Section 4.1.1). This functionality is necessary for management insight into 

system operation and in order to understand the system wide impact of viruses. Real 

time displays could also be created based on the metric information. This function- 

ality is not currently not implemented. 
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Additional Detectors Only file infector viruses are detected with the prototype system. 

Additional agent types need to be created in order to detect and remove the other 

viral threats, such as macro and boot sector viruses (Section 2.1.1). A complete set 

of detector types is required to create a multi-layered defense in depth. 

User Interfaces This prototype offers a command-line only functionality with little ac- 

cess to system operation, except for test scripts. Graphical user interfaces (GUIs) 

need to be created in order to interface more effectively, and efficiently, with the 

CVIS agents. This would also allow for more user control over system variables, such 

as scan location, which are currently hard coded. 

Robust Deployment The prototype contains very little code to deal with system fail- 

ures. However, the system architecture is designed to one-day accommodate such 

functionality. Features should be added to support the graceful degradation of ser- 

vice in the face of failure, instead of system collapse. This could include backup 

agents, such as Monitors that automatically fail over to their adjacent peers, and 

communications timeouts with recovery. 

Security The current system is highly vulnerable to spoofing and denial of service at- 

tacks. For instance, erroneous vaccinations could easily be sent to a Detector, which 

could cause an autoimmune reaction. The prototype architecture easily supports the 

addition of security layers, such as secure socket communication and agent authen- 

tication, but they are not currently implemented. These would have to be added, 

especially for a wide area network deployment, in order to overcome the security 

problems associated with system compromise. 

6.4    Summary 

The system design integrates the power, flexibility, adaption, and capabilities of the 

biological immune system into an architecture realizable in the information system domain. 

Based on the models, the prototype implementation provides an effective solution for the 

detection, identification, and elimination of malicious code. The level of effectiveness is 

tunable through the proper selection of the number of antibodies, the antibody length, 
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and the detection threshold. These must be selected based on the contents of known self 

and with an understanding of their ramifications on negative selection time, scan time, 

and non-self space coverage. 

The use of the agent paradigm facilitates the construction of an artificial immune 

system because of the performance limitations of a monolithic implementation and the bio- 

logical basis for the architecture can be viewed as a system of collaborating agents (Syc98). 

While using agents improves the understanding of the system design and the mapping to 

the biological domain, the deployment of the agents must be done by considering the prin- 

ciples of parallel software design in order to improve performance. For an agent-based 

CVIS, this involves reducing communication and placing detection agents near their I/O 

sources. 

This CVIS design is scaleable in terms of scope and coverage through the simple 

addition of new agent types and participating system nodes. The prototype only imple- 

ments file system detection, but a more complete multi-layered defense could be realized by 

adding agent types for monitoring memory, email, and boot sectors. Additionally, because 

the Java Shared Data Toolkit provides lookup services, agents can join or leave the system 

at anytime. 

Testing reveals that the communication services provided by JSDT are scaleable up 

to about 37 simultaneous conversations using midrange server hardware (ABC-Al, Sec- 

tion 5.1.6, Table 24). Using only one Controller agent (an improper deployment due to the 

single point of failure) and a pyramid deployment of nodes underneath it, over 1400 agents 

engaged in constant communication can be supported. Even this initial prototype provides 

enough scaleability for an enterprise wide deployment. Implementation and algorithmic 

improvements could expand this. 

While this effort proved to be effective and scaleable, the prototype performance does 

not provide for a practical implementation nor unobtrusive operation. The communication 

times of the JSDT are disappointing and although they are executed as background tasks, 

their speed indicates that alternate communication solutions should be investigated for 

an actual fielded implementation.   The Java implementation provides a good prototype 
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environment, but its speed limits the system usability. The negative selection and scanning 

times measured in years are unacceptable for a practical system. An implementation 

improvement to increase the system speed is paramount to future system viability. 

The agent-based computer virus immune system offers detection and management 

capabilities that are absent from current solutions. These facets are able to work together 

to provide enterprise wide viral protection. This research focuses on the computer virus 

problem domain, but artificial immune systems can be applied to other areas as well. 

An obvious extension would be network intrusion detection (by changing the scan string 

composition), but other uses include machine learning and function optimization. The 

effectiveness of distributed problem solving through an agent-based approach demonstrated 

here could be applied to other immune system projects to improve their performance. 
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List of Acronyms 

ADK - Agent Development Kit. 

AgML - Agent Modeling Language. 

AIS - Artificial Immune System. 

APC - Antigen Presenting Cell. 

API - Application Program Interface. 

ARG - Agent Research Group. 

AV - Anti-Virus. 

BIS - Biological Immune System. 

C4ISR - Command, Control, Communications, Computers, Intelligence, Surveillance and 

Reconnaissance. 

CHS - Computer Health System. 

COM - Component Object Model. 

CORBA - Component Object Request Broker Architecture. 

CPU - Central Processing Unit. 

CRC - Cyclic Redundancy Code. 

CVIS - Computer Virus Immune System. 

CVC - Center for Virus Control. 

DCOM - Distributed Component Object Model. 

DNA - Deoxyribose Nucleic Acid. 

DOS - Disk Operating System. 

EICAR - European Institute for Computer Anti-Virus Research. 

GA - Genetic Algorithm. 

GUID - Global Unique Identifier. 

HTTP - Hypertext Transfer Protocol. 
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JIT - Just In Time (Compiler). 

JMQ - Java Message Queue. 

JMS - Java Message Service. 

JNI - Java Native Interface. 

JSDT - Java Shared Data Toolkit. 

JVM - Java Virtual Machine. 

LRMP - Light-weight Reliable Multicast Package. 

MAS - Multi-agent System. 

MaSE - Multi-agent Systems Engineering. 

MBR - Master Boot Record. 

MHC - Major Histocompatibility Complex. 

MOM - Message Oriented Middleware. 

MOP - Measure of Performance. 

MPI - Message Passing Interface. 

NAV - Norton Anti-Virus. 

OO - Object-oriented. 

OOA - Object-oriented Analysis. 

OOD - Object-oriented Design. 

RMI - Remote Method Invocation. 

RPC - Remote Procedure Call. 

SNR - Signal to Noise Ratio. 

SSL - Secure Socket Layer. 

STD - State Transition Diagram. 

TSR - Terminate and Stay Resident. 

UML - Unified Modeling Language. 
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UNM - University of New Mexico. 

VBA - Visual Basic for Applications. 

VPA - Virus Prevention Agency. 

WM - Word Macro (virus), e.g. WM.Concept. 

XM - Excel Macro (virus), e.g XM.Laroux. 

164 



www.manaraa.com

Appendix A.   Design Documentation 

A.l    Agent Conversations 

A. 1.1    State Transition Diagrams. 

trans miss ion failure / send(m Pass File Pointer) 

cPassFileP ointer: Sender 

Asend(mP ass FileP ointer) 

[ invalid data ] *s end(trans m is s ion failure) 

Kreceive( m P ass F ileP ointer )' 

cPass FilePointer: Receiver 
[ data valid ] Asend(mC om plete) 

 *  
C lassifjr 

entry: class ify(m P assF ilePointei .filenam e) 

m 
Pass file pointer conversation. 
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trans miss ion failure ^sendCm V accination) 

cVaccinatton: Sender 

send( mVaccination ) 

cVaccination: Receiver 

[ valid data, agent instance of M onitor J *send(m Va ccination) 

receive( mVaccination ) 

■iWaitZ 

^•^       [invalid data ] ^ e nd(trans mis s ion failure) 

receive^ mVaccination ) 

^ 

-> 
ValidateVaccination 

entry: valid ate(mVacoination) 

[valid data, agent ins tanceof D etector ] *send(m C omplete) 

 V  
Process Vaccination 

entry: va ccinate(mVaccinatio n.pattern) 

Vaccination conversation. 
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trans m iss ion fa ilure *send(mRais eW arning) 

cRaiseW arning: Sender 

send( mR aiseW arning )' 

cRaiseW arning: Receiver 

receiver; m R ais eW arning ) receiver; m R ais eW arning ) 

Raise a warning conversation. 
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trans m iss ion failure / s«nd(m Status) 

cStatus: Sender 

[ invalid d ata ] *s end(tra ns miss ion failure) 

cStatus: Receiver [valid data ] 's end(m Complete) 

 JL  
Process I 

entry: pro cess(mStatus .text) 

Agent or system status passing conversation. 

*m 
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trans miss ion failure *send(m Up date Threshold) 

oUpdateThreshold: Sender 

send( mU pdateThres hold ) 

Threshold: Receiver 

receive( m Complete ) 

reeeh/ef m UpdateThreshold ) ,.      „.   /*!   , A_      J« I      * ■■      % v      NT [ invalid data ] *send(transm ission failure) 
receive( m UpdateThreshold ) 

ValidateUpdateThreshofd 

entry: validate(mU pdateThres hold) 

[ valid data ] *send(mComplete) 

 v  
P rocessU pdateThres hold 

entry: up dateThr es höld(m Update Thresh old. direction) 

Update matching threshold conversation. 
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cS endM essage: Sender 

transmission failure *s end(mInform ation) 

A 
send( m Inform ation ) 

cSendM essage: Receiver 

^receive( m Complete ) 

receive^ m Inform ation ) 
\  

Wart2 

[ invalid data ] /5end(trans miss ion failure) 

receive^ m Inform ation ) 

Validates endM ess age 

entry: validate(mInformationj 

[valid data ] *s end(m Com plete) 

1 
Process S endM ess age 

entry: dis play(m Inform ation.text) 

Agent message passing conversation. 
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A.1.2   Message Sequence Charts. 

cSendMessage 
Notifier User Interface 

Display 

Agent message passing conversation. 

Sender 
cStatus 

mStatus 

Receiver 

mComplete 

—^ Process 

Agent or system status passing conversation. 

cUpdateThreshold 
Sender Implementer 

mUpdateThreshold 
Process 

Update matching threshold conversation. 
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Controller 

cVaccination 
Monitor Detector 

mVaccination  Validate 

'                mVaccination 
mComplete 

mComplete 

Process 

Vaccination conversation. 

cPassFilePointer 
Monitor Classifier 

mPassFilePöinter 
Process 

Pass file pointer conversation. 
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Appendix B.   Source Code Availability   , 

The source code and original design documentation for the agent-based computer virus 

immune system is not included as part of this document. Those interested in obtaining a 

copy of these should direct their requests to: 

Dr. Gary Lamont 
AFIT/ENG 

2950 P Street 
WPAFB, OH 45433-7765 

gary.lamont@afit. af.mil 
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